4D Tomography for neutron depth profiling applications

被引:0
|
作者
Neagu, R. [1 ]
Golenev, S. [1 ]
Werner, L. [1 ]
Berner, C. [1 ]
Gilles, R. [2 ]
Revay, Z. [2 ]
Ziegele, L. [1 ]
Plomp, J. [3 ]
Maerkisch, B. [1 ]
Gernhaeuser, R. [1 ]
机构
[1] Tech Univ Munich TUM, TUM Sch Nat Sci, Phys Dept, D-85748 Garching, Germany
[2] Tech Univ Munich, Forsch Neutronenquelle Heinz Maier Leibnitz, D-85748 Garching, Germany
[3] Delft Univ Technol, Reactor Inst, NL-2629 Delft, Netherlands
关键词
Neutron depth profiling; N4DP-instrument; Double-sided silicon strip detector; Self-triggering electronics; FRM II; RID; SILICON-GRAPHITE ELECTRODES; DESIGN; LITHIUM; INSTRUMENT; ACTIVATION; FACILITY; DETECTOR;
D O I
10.1016/j.nima.2024.169543
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
High-rate Neutron Depth Profiling (NDP) is a very efficient and precise probe for studying the evolution of lithium concentration in thin-layer structures, e.g., battery electrodes. NDP is typically limited to a one-dimensional depth analysis summed over the profile area covered by the neutron beam. We developed a detector system based on double-sided silicon strip detectors (DSSSD) with extremely thin and homogeneous entrance windows to provide a new quality of NDP measurements in 3+1 dimensions for the N4DP instrument at the FRM II in Garching, Germany. Using the Li-6(n, a)H-3 reaction in an experiment conducted at the research reactor in Delft, we achieved a lateral position resolution down to similar to 100 mu m and an energy resolution with FWHM approximate to 10keV for the triton particles at energies of 2.7MeV. High-resolution 3D pictures with a contrast uncertainty <10% per pixel can be achieved faster than 1 picture per minute. This rate can be adjusted individually for each experiment by sacrificing granularity in the position measurement.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] The use of 4D seismic for ocean acoustic tomography
    Accaino, F
    Böhm, G
    Dal Moro, G
    Madrussani, G
    Rossi, G
    Vesnaver, A
    THEORETICAL AND COMPUTATIONAL ACOUSTICS 2001, 2002, : 219 - 225
  • [22] 4D Biofabrication: Materials, Methods, and Applications
    Ionov, Leonid
    ADVANCED HEALTHCARE MATERIALS, 2018, 7 (17)
  • [23] 4D Wheeler diagrams: concept and applications
    Qayyum, Farrukh
    De Groot, Paul
    Hemstra, Nanne
    Catuneanu, Octavian
    STRATA AND TIME: PROBING THE GAPS IN OUR UNDERSTANDING, 2015, 404 : 223 - 232
  • [24] Deformable registration of 4D computed tomography data
    Rietzel, Eike
    Chen, George T. Y.
    MEDICAL PHYSICS, 2006, 33 (11) : 4423 - 4430
  • [25] 4D Printing: Technologies, Materials and Applications
    Zhang Y.
    Li J.
    Xia J.
    Zhang Y.
    Cailiao Daobao/Materials Reports, 2021, 35 (01): : 01212 - 01223
  • [26] 4D Electron Microscopy: Principles and Applications
    Flannigan, David J.
    Zewail, Ahmed H.
    ACCOUNTS OF CHEMICAL RESEARCH, 2012, 45 (10) : 1828 - 1839
  • [27] Functional applications of 4D printing: A review
    Mohol, Shubham Shankar
    Sharma, Varun
    RAPID PROTOTYPING JOURNAL, 2021, 27 (08) : 1501 - 1522
  • [28] 4D Printing for Automotive Industry Applications
    Raina A.
    Haq M.I.U.
    Javaid M.
    Rab S.
    Haleem A.
    Journal of The Institution of Engineers (India): Series D, 2021, 102 (02) : 521 - 529
  • [29] 4D Applications of GIS in Construction Management
    Kumar, A. Chaitanya
    Reshma, T.
    ADVANCES IN CIVIL ENGINEERING, 2017, 2017
  • [30] Advances in 4D Printing: Materials and Applications
    Kuang, Xiao
    Roach, Devin J.
    Wu, Jiangtao
    Hamel, Craig M.
    Ding, Zhen
    Wang, Tiejun
    Dunn, Martin L.
    Qi, Hang Jerry
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (02)