Tunneling Spectroscopy at Megabar Pressures: Determination of the Superconducting Gap in Sulfur

被引:1
|
作者
Du, F. [1 ]
Balakirev, F. F. [2 ]
Minkov, V. S. [1 ]
Smith, G. A. [2 ]
Maiorov, B.
Kong, P. P. [1 ]
Drozdov, A. P. [1 ]
Eremets, M. I. [1 ]
机构
[1] Max Planck Inst Chem, Hahn Meitner Weg 1, D-55128 Mainz, Germany
[2] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA
基金
美国国家科学基金会;
关键词
X-RAY-DIFFRACTION; MICROSCOPIC THEORY; ENERGY-GAP; TEMPERATURE; SPIN; DEPENDENCE; GPA;
D O I
10.1103/PhysRevLett.133.036002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The recent discovery of high-temperature, high-pressure superconductors, such as hydrides and nickelates, has opened exciting avenues in studying high-temperature superconductivity. The primary superconducting properties of these materials are well characterized by measuring various electrical and magnetic properties, despite the challenges posed by the high-pressure environment. Experimental microscopic insight into the pairing mechanism of these superconductors is even more challenging, due to the lack of direct probes of the superconducting gap structures at high pressure conditions. Here, we have developed a planar tunnel junction technique for diamond anvil cells and present ground-breaking tunneling spectroscopy measurements at megabar pressures. We determined the superconducting gap of elemental sulfur at 160 GPa, a key constituent of the high-temperature superconductor H3S. 3 S. High quality tunneling spectra indicate that beta-Po phase sulfur is a type II superconductor with a single s- wave gap with a gap value 2 Delta(0) Delta (0) 1 / 4 5.6 meV. This technique is compatible with superconducting compounds synthesized in diamond anvil cells and provides insight into the pairing mechanism in novel superconductors under high-pressure conditions.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Superconducting gap in the tunneling spectra of high-Tc cuprates
    Oda, M
    Hoya, K
    Abe, N
    Yokoyama, M
    Momono, N
    Nakano, T
    Nagata, T
    Ido, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1998, 12 (29-31): : 3179 - 3182
  • [42] Superconducting tunneling spectroscopy of a carbon nanotube quantum dot
    Dirks, Travis
    Chen, Yung-Fu
    Birge, Norman O.
    Mason, Nadya
    APPLIED PHYSICS LETTERS, 2009, 95 (19)
  • [43] SUPERCONDUCTING TUNNELING SPECTROSCOPY AND THE OBSERVATION OF THE JOSEPHSON EFFECT.
    Rowell, J.M.
    IEEE Transactions on Magnetics, 1986, MAG-23 (02)
  • [44] Superconducting parameters of YBCO and BSCCO from 'tunneling' spectroscopy
    Seidel, P.
    Grajcar, M.
    Plecenik, A.
    Hlubina, R.
    Physica B: Condensed Matter, 1996, 218 (1-4): : 224 - 227
  • [45] SUPERCONDUCTING ENERGY-GAP IN COULOMB STAIRCASE TUNNELING STRUCTURES
    MCGREER, KA
    WAN, JC
    ANAND, N
    GOLDMAN, AM
    PHYSICAL REVIEW B, 1989, 39 (16): : 12260 - 12263
  • [46] A new method of superconducting energy gap spectroscopy
    Gogadze, GA
    Svistunov, VM
    Aoki, R
    Murakami, H
    Shirai, M
    PHYSICA C, 1998, 297 (3-4): : 232 - 238
  • [47] SUPERCONDUCTING ENERGY GAP OF BULK LANTHANUM BY POINT CONTACT TUNNELING
    LEVINSTEIN, HJ
    CHIRBA, VG
    KUNZLER, JE
    PHYSICS LETTERS A, 1967, A 24 (07) : 362 - +
  • [48] Scanning tunneling microscopy/spectroscopy on superconducting diamond films
    Nishizaki, Terukazu
    Takano, Yoshihiko
    Nagao, Masanori
    Takenouchi, Tomohiro
    Kawarada, Hiroshi
    Kobayashi, Norio
    NEW DIAMOND AND FRONTIER CARBON TECHNOLOGY, 2007, 17 (01): : 21 - 31
  • [49] SUPERCONDUCTING ENERGY-GAP OF THORIUM DETERMINED BY ELECTRON TUNNELING
    HASKELL, BA
    KEELER, WJ
    FINNEMOR.DK
    PHYSICAL REVIEW B, 1972, 5 (11): : 4364 - &
  • [50] Superconducting parameters of YBCO and BSCCO from 'tunneling' spectroscopy
    Seidel, P
    Grajcar, M
    Plecenik, A
    Hlubina, R
    PHYSICA B, 1996, 218 (1-4): : 224 - 227