Setting Ranges in Potential Biomarkers for Type 2 Diabetes Mellitus Patients Early Detection By Sex-An Approach with Machine Learning Algorithms

被引:0
|
作者
Morgan-Benita, Jorge A. [1 ]
Celaya-Padilla, Jose M. [1 ]
Luna-Garcia, Huizilopoztli [1 ]
Galvan-Tejada, Carlos E. [1 ]
Cruz, Miguel [2 ]
Galvan-Tejada, Jorge I. [1 ]
Gamboa-Rosales, Hamurabi [1 ]
Sanchez-Reyna, Ana G. [1 ]
Rondon, David [3 ]
Villalba-Condori, Klinge O. [4 ]
机构
[1] Univ Autonoma Zacatecas, Unidad Academ Ingn Electr, Jardin Juarez 147, Zacatecas 98000, Mexico
[2] Hosp Especial, Inst Mexicano Seguro Social, Ctr Med Nacl Siglo21, Unidad Invest Med Bioquim, Mexico City 06720, Mexico
[3] Univ Continental, Dept Estudios Gen, Arequipa 04001, Peru
[4] Univ Catolica Santa Maria, Vicerrectorado Invest, Yanahuara 04013, Peru
关键词
machine learning; biomarkers; type; 2; diabetes; Akaike information criterion; recursive feature elimination; GENDER-DIFFERENCES; INSULIN-RESISTANCE; MORTALITY; SELECTION; MODELS; AKAIKE; RISK;
D O I
10.3390/diagnostics14151623
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Type 2 diabetes mellitus (T2DM) is one of the most common metabolic diseases in the world and poses a significant public health challenge. Early detection and management of this metabolic disorder is crucial to prevent complications and improve outcomes. This paper aims to find core differences in male and female markers to detect T2DM by their clinic and anthropometric features, seeking out ranges in potential biomarkers identified to provide useful information as a pre-diagnostic tool whie excluding glucose-related biomarkers using machine learning (ML) models. We used a dataset containing clinical and anthropometric variables from patients diagnosed with T2DM and patients without TD2M as control. We applied feature selection with three different techniques to identify relevant biomarker models: an improved recursive feature elimination (RFE) evaluating each set from all the features to one feature with the Akaike information criterion (AIC) to find optimal outputs; Least Absolute Shrinkage and Selection Operator (LASSO) with glmnet; and Genetic Algorithms (GA) with GALGO and forward selection (FS) applied to GALGO output. We then used these for comparison with the AIC to measure the performance of each technique and collect the optimal set of global features. Then, an implementation and comparison of five different ML models was carried out to identify the most accurate and interpretable one, considering the following models: logistic regression (LR), artificial neural network (ANN), support vector machine (SVM), k-nearest neighbors (KNN), and nearest centroid (Nearcent). The models were then combined in an ensemble to provide a more robust approximation. The results showed that potential biomarkers such as systolic blood pressure (SBP) and triglycerides are together significantly associated with T2DM. This approach also identified triglycerides, cholesterol, and diastolic blood pressure as biomarkers with differences between male and female actors that have not been previously reported in the literature. The most accurate ML model was selection with RFE and random forest (RF) as the estimator improved with the AIC, which achieved an accuracy of 0.8820. In conclusion, this study demonstrates the potential of ML models in identifying potential biomarkers for early detection of T2DM, excluding glucose-related biomarkers as well as differences between male and female anthropometric and clinic profiles. These findings may help to improve early detection and management of the T2DM by accounting for differences between male and female subjects in terms of anthropometric and clinic profiles, potentially reducing healthcare costs and improving personalized patient attention. Further research is needed to validate these potential biomarkers ranges in other populations and clinical settings.
引用
收藏
页数:43
相关论文
共 50 条
  • [1] Exploring the effectiveness of machine learning algorithms for early detection of Type-2 Diabetes Mellitus
    S G.
    Venkata Siva Reddy R.
    Ahmed M.R.
    [J]. Measurement. Sens., 2024,
  • [2] Type 2 Diabetes Mellitus: Early Detection using Machine Learning Classification
    Gowthami, S.
    Reddy, Venkata Siva
    Ahmed, Mohammed Riyaz
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (06) : 1191 - 1198
  • [3] Comparing and tuning machine learning algorithms to predict type 2 diabetes mellitus
    Aguilera-Venegas, Gabriel
    Lopez-Molina, Amador
    Rojo-Martinez, Gemma
    Galan-Garcia, Jose Luis
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 427
  • [4] Early detection of type 2 diabetes mellitus using machine learning-based prediction models
    Kopitar, Leon
    Kocbek, Primoz
    Cilar, Leona
    Sheikh, Aziz
    Stiglic, Gregor
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [5] Early detection of type 2 diabetes mellitus using machine learning-based prediction models
    Leon Kopitar
    Primoz Kocbek
    Leona Cilar
    Aziz Sheikh
    Gregor Stiglic
    [J]. Scientific Reports, 10
  • [6] MicroRNAs as Potential Biomarkers of Type 2 Diabetes Mellitus
    Z. N. Tonyan
    Y. A. Nasykhova
    A. A. Mikhailova
    A. S. Glotov
    [J]. Russian Journal of Genetics, 2021, 57 : 764 - 777
  • [7] MicroRNAs as Potential Biomarkers of Type 2 Diabetes Mellitus
    Tonyan, Z. N.
    Nasykhova, Y. A.
    Mikhailova, A. A.
    Glotov, A. S.
    [J]. RUSSIAN JOURNAL OF GENETICS, 2021, 57 (07) : 764 - 777
  • [8] Machine learning algorithms for early diagnosis of diabetes mellitus: A comparative study
    Rawat, Vandana
    Joshi, Shivangi
    Gupta, Shikhar
    Singh, Devesh Pratap
    Singh, Neelam
    [J]. MATERIALS TODAY-PROCEEDINGS, 2022, 56 : 502 - 506
  • [9] Assessment of potential biomarkers of atherosclerosis in Indian patients with type 2 diabetes mellitus
    Kulkarni, Namrata Bindurao
    Ganu, Meghana Ulhas
    Godbole, Sanjay Ganpati
    Deo, Sudha S.
    [J]. INDIAN JOURNAL OF MEDICAL RESEARCH, 2018, 147 : 169 - 176
  • [10] Sex Differences in Microvascular Function and Circulating Biomarkers in Patients with Type 2 Diabetes Mellitus
    Zanesco, Angelina
    Jarrete, Aline Pincerato
    Giollo-Junior, L.
    Martin, Jose Fernando Vilela
    Delbin, Maria Andreia
    [J]. FASEB JOURNAL, 2019, 33