Electronic and hole mobilities in wide band-gap monolayer tungsten carbide

被引:0
|
作者
Sharma, Tushar [1 ]
Saraswat, Rishabh [2 ]
Bhattacharya, Sitangshu [2 ]
Verma, Rekha [1 ]
机构
[1] Indian Inst Informat Technol Allahabad, Nanoscale Electrothermal Lab, Allahabad 211015, Uttar Pradesh, India
[2] Indian Inst Informat Technol Allahabad, Elect Struct Theory Grp, Dept Elect & Commun Engn, Allahabad 211015, Uttar Pradesh, India
关键词
electron-phonon; 2D materials; mobility; self-energies; GENERATION;
D O I
10.1109/EDTM58488.2024.10512059
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using a rigorous ab-initio many body perturbation theory, we demonstrate here that a novel tungsten carbide (WC) in its two-dimensional (2D) hexagonal (h) structure posses a strong electron-phonon correlation. 2D h-WC is an indirect semiconductor and has a large band-gap (similar to 1.10 eV) and spinorbit splitting. We show that due to this strong interaction, a significant self-energy correction appears at various cryogenic and room temperatures. This leads to a strong intra- and interband scattering rates suppressing the electronic and hole mobility around 56 and 9 cm(2)V(-1)s(-1) at room temperature.
引用
收藏
页码:388 / 390
页数:3
相关论文
共 50 条
  • [1] Tungsten in silicon carbide:: Band-gap states and their polytype dependence
    Achtziger, N
    Pasold, G
    Sielemann, R
    Hülsen, C
    Grillenberger, J
    Witthuhn, W
    PHYSICAL REVIEW B, 2000, 62 (19): : 12888 - 12895
  • [2] Electronic structure of doped and irradiated wide band-gap crystals
    Kulagin, NA
    PHYSICS OF LASER CRYSTALS, 2003, 126 : 135 - 162
  • [3] Hole states in wide band-gap diluted magnetic semiconductors and oxides
    Dietl, Tomasz
    PHYSICAL REVIEW B, 2008, 77 (08)
  • [4] Wide band-gap seismic metastructures
    Kroedel, S.
    Thome, N.
    Daraio, C.
    EXTREME MECHANICS LETTERS, 2015, 4 : 111 - 117
  • [5] Templated wide band-gap nanostructures
    Alizadeh, A.
    Sharma, P.
    Ganti, S.
    LeBoeuf, S.F.
    Tsakalakos, L.
    Journal of Applied Physics, 2004, 95 (12): : 8199 - 8206
  • [6] Codoping in wide band-gap semiconductors
    Katayama-Yoshida, H
    Nishimatsu, T
    Yamamoto, T
    Orita, N
    COMPOUND SEMICONDUCTORS 1998, 1999, (162): : 747 - 756
  • [7] Templated wide band-gap nanostructures
    Alizadeh, A
    Sharma, P
    Ganti, S
    LeBoeuf, SF
    Tsakalakos, L
    JOURNAL OF APPLIED PHYSICS, 2004, 95 (12) : 8199 - 8206
  • [8] Band-gap tuning of monolayer graphene by oxygen adsorption
    Takahashi, Toru
    Sugawara, Katsuaki
    Noguchi, Eiichi
    Sato, Takafumi
    Takahashi, Takashi
    CARBON, 2014, 73 : 141 - 145
  • [9] Wide band-gap power semiconductor devices
    Millan, J.
    IET CIRCUITS DEVICES & SYSTEMS, 2007, 1 (05) : 372 - 379
  • [10] Wide band-gap ZnHgSSe for visible lasers
    Hara, K
    Haneda, S
    Eguchi, Y
    Munekata, H
    JOURNAL OF CRYSTAL GROWTH, 1998, 184 : 610 - 613