Achieving persistent room-temperature phosphorescence from phenanthridone derivatives by molecular engineering

被引:1
|
作者
Wu, Hongzhuo [1 ,2 ]
Wang, Deliang [1 ,3 ]
Zhang, Jianquan [4 ]
Alam, Parvej [4 ]
Zhao, Zheng [4 ]
Xiong, Yu [1 ]
Wang, Dong [1 ]
Tang, Ben Zhong [4 ]
机构
[1] Shenzhen Univ, Coll Mat Sci & Engn, Ctr AIE Res, Guangdong Res Ctr Interfacial Engn Funct Mat,Shenz, Shenzhen 518061, Peoples R China
[2] Henan Univ, Natl & Local Joint Engn Res Ctr High Efficiency Di, Key Lab Special Funct Mat, Minist Educ, Kaifeng 475004, Peoples R China
[3] Huzhou Univ, Dept Mat Chem, East 2nd Ring Rd 759, Huzhou 313000, Peoples R China
[4] Chinese Univ Hong Kong, Shenzhen Inst Aggregate Sci & Technol, Sch Sci & Engn, Shenzhen 518172, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
ORGANIC MATERIALS; DESIGN;
D O I
10.1039/d4tc01387e
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Organic room-temperature phosphorescence (RTP) materials have emerged as promising candidates for various applications. However, persistent organic RTP materials are still rare and are limited to specific chromophore backbones as most organic molecules possess inefficient intersystem crossing. Herein, a facile molecular engineering strategy is proposed to impart tunable persistent RTP properties to phenanthridone (PTD) derivatives through substituent effects. Notably, by adjusting the electronic effect or position of substituents, an ultralong lifetime of 114.90 ms is achieved in the PTD-BnCl crystal. Single-crystal structure analysis shows that the variation in the electronic effect or position of substituents can significantly affect intermolecular interactions and molecular packing, thus giving rise to a remarkable influence on the RTP properties of PTD derivatives in bulk crystals. Furthermore, theoretical calculations not only reveal the mechanism of persistent RTP emission but also elucidate the impact of substituent effects on RTP properties from the molecular and crystalline perspectives, respectively. These simple PTD derivatives with persistent RTP properties are reported for the first time and will help enrich the diversity of organic RTP chromophores. A facile design strategy based on molecular engineering is proposed for the first time to achieve a series of PTD derivatives with tunable persistent RTP properties through substituent effects.
引用
收藏
页码:15527 / 15534
页数:8
相关论文
共 50 条
  • [31] The Effect of Molecular Conformations and Simulated "Self-Doping" in Phenothiazine Derivatives on Room-Temperature Phosphorescence
    Gao, Mingxue
    Tian, Yu
    Li, Xiaoning
    Gong, Yanxiang
    Fang, Manman
    Yang, Jie
    Li, Zhen
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (05)
  • [32] Achieving long lifetime of room-temperature phosphorescence via constructing vitrimer networks
    Gao, Yulei
    Deng, Zhou
    Wang, Fenfen
    Sun, Pingchuan
    MATERIALS CHEMISTRY FRONTIERS, 2022, 6 (08) : 1068 - 1078
  • [33] Waterborne polyurethanes prepared from benzophenone derivatives with delayed fluorescence and room-temperature phosphorescence
    Wang, Tao
    Zhou, Cao
    Zhang, Xingyuan
    Xu, Dong
    POLYMER CHEMISTRY, 2018, 9 (11) : 1303 - 1308
  • [34] Achieving Colorful Ultralong Organic Room-Temperature Phosphorescence by Precise Modification of Nitrogen Atoms on Phosphorescence Units
    Jin, Huiwen
    Zhang, Xue
    Ma, Jiaxin
    Bu, Lijuan
    Qian, Chen
    Li, Zewei
    Guan, Yan
    Chen, Mingxing
    Ma, Zhimin
    Ma, Zhiyong
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (47) : 54732 - 54742
  • [35] Achieving Colorful Ultralong Organic Room-Temperature Phosphorescence by Precise Modification of Nitrogen Atoms on Phosphorescence Units
    Jin H.
    Zhang X.
    Ma J.
    Bu L.
    Qian C.
    Li Z.
    Guan Y.
    Chen M.
    Ma Z.
    Ma Z.
    ACS Applied Materials and Interfaces, 2023, 15 (47): : 54732 - 54742
  • [36] Tailoring Noncovalent Interactions to Activate Persistent Room-Temperature Phosphorescence from Doped Polyacrylonitrile Films
    Wu, Hongzhuo
    Wang, Deliang
    Zhao, Zheng
    Wang, Dong
    Xiong, Yu
    Tang, Ben Zhong
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (32)
  • [37] Persistent Room-Temperature Phosphorescence from Purely Organic Molecules and Multi-Component Systems
    Wu, Zhu
    Nitsch, Jorn
    Marder, Todd B.
    ADVANCED OPTICAL MATERIALS, 2021, 9 (20)
  • [38] Ultralong Room-Temperature Phosphorescence from Boric Acid
    Zheng, Haoyue
    Cao, Peisheng
    Wang, Yanying
    Lu, Xiaomei
    Wu, Peng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (17) : 9500 - 9506
  • [39] Room-temperature phosphorescence from purely organic materials
    Yang Liu
    Ge Zhan
    Zhi-Wei Liu
    Zu-Qiang Bian
    Chun-Hui Huang
    ChineseChemicalLetters, 2016, 27 (08) : 1231 - 1240
  • [40] Room-temperature phosphorescence from purely organic materials
    Liu, Yang
    Zhan, Ge
    Liu, Zhi-Wei
    Bian, Zu-Qiang
    Huang, Chun-Hui
    CHINESE CHEMICAL LETTERS, 2016, 27 (08) : 1231 - 1240