Machine learning approach for prediction of outcomes in anticoagulated patients with atrial fibrillation

被引:4
|
作者
Bernardini, Andrea [1 ,4 ]
Bindini, Luca [2 ]
Antonucci, Emilia [3 ]
Berteotti, Martina [4 ]
Giusti, Betti [4 ]
Testa, Sophie [5 ]
Palareti, Gualtiero [3 ]
Poli, Daniela [4 ]
Frasconi, Paolo [2 ]
Marcucci, Rossella [4 ]
机构
[1] Santa Maria Nuova Hosp, Cardiol & Electrophysiol Unit, Piazza Santa Maria Nuova 1, I-50122 Florence, Italy
[2] Univ Florence, Dept Informat Engn, I-50139 Florence, Italy
[3] Arianna Anticoagulaz Fdn, Bologna, Italy
[4] Univ Florence, Dept Expt & Clin Med, Florence, Italy
[5] Azienda Socio Sanit Territoriale, Hemostasis & Thrombosis Ctr, Lab Med Dept, Cremona, Italy
关键词
Atrial fibrillation; Machine learning; Anticoagulation; Bleeding; STROKE; RISK; THROMBOEMBOLISM; METAANALYSIS; DEATH; SCORE;
D O I
10.1016/j.ijcard.2024.132088
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: The accuracy of available prediction tools for clinical outcomes in patients with atrial fibrillation (AF) remains modest. Machine Learning (ML) has been used to predict outcomes in the AF population, but not in a population entirely on anticoagulant therapy. Methods and aims: Different supervised ML models were applied to predict all -cause death, cardiovascular (CV) death, major bleeding and stroke in anticoagulated patients with AF, processing data from the multicenter START -2 Register. Results: 11078 AF patients (male n = 6029, 54.3%) were enrolled with a median follow-up period of 1.5 years [IQR 1.0 -2.6]. Patients on Vitamin K Antagonists (VKA) were 5135 (46.4%) and 5943 (53.6%) were on Direct Oral Anticoagulants (DOAC). Using Multi -Gate Mixture of Experts, a cross-validated AUC of 0.779 +/- 0.016 and 0.745 +/- 0.022 were obtained, respectively, for the prediction of all -cause death and CV-death in the overall population. The best ML model outperformed CHA 2 DSVA 2 SC and HAS-BLED for all -cause death prediction ( p < 0.001 for both). When compared to HAS-BLED, Gradient Boosting improved major bleeding prediction in DOACs patients (0.711 vs. 0.586, p < 0.001). A very low number of events during follow-up (52) resulted in a suboptimal ischemic stroke prediction (best AUC of 0.606 +/- 0.117 in overall population). Body mass index, age, renal function, platelet count and hemoglobin levels resulted the most important variables for ML prediction. Conclusions: In AF patients, ML models showed good discriminative ability to predict all -cause death, regardless of the type of anticoagulation strategy, and major bleeding on DOAC therapy, outperforming CHA 2 DS 2 VASC and the HAS-BLED scores for risk prediction in these populations.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Detection of Atrial Fibrillation Using a Machine Learning Approach
    Liaqat, Sidrah
    Dashtipour, Kia
    Zahid, Adnan
    Assaleh, Khaled
    Arshad, Kamran
    Ramzan, Naeem
    INFORMATION, 2020, 11 (12) : 1 - 15
  • [22] Left atrial function for predicting atrial fibrillation: a machine learning approach
    Masini, G.
    Ji, Y.
    Eaton, A.
    Wang, W.
    Inciardi, R. M.
    Alonso, A.
    Soliman, E. Z.
    Solomon, S.
    Shah, A. M.
    De Caterina, R.
    Chen, L. Y.
    EUROPEAN HEART JOURNAL, 2024, 45
  • [23] Left atrial function for predicting atrial fibrillation: a machine learning approach
    Masini, G.
    Ji, Y.
    Eaton, A.
    Wang, W.
    Inciardi, R. M.
    Alonso, A.
    Soliman, E. Z.
    Solomon, S.
    Shah, A. M.
    De Caterina, R.
    Chen, L. Y.
    EUROPEAN HEART JOURNAL, 2024, 45
  • [24] Echocardiographic Risk Factors for Stroke and Outcomes in Patients With Atrial Fibrillation Anticoagulated With Apixaban or Warfarin
    Vinereanu, Dragos
    Lopes, Renato D.
    Mulder, Hillary
    Gersh, Bernard J.
    Hanna, Michael
    de Barros e Silva, Pedro G. M.
    Atar, Dan
    Wallentin, Lars
    Granger, Christopher B.
    Alexander, John H.
    STROKE, 2017, 48 (12) : 3266 - 3273
  • [25] Phenotypes and outcomes in non-anticoagulated patients with atrial fibrillation: An unsupervised cluster analysis
    Bisson, Arnaud
    Fawzy, Ameenathul M.
    Romiti, Giulio Francesco
    Proietti, Marco
    Angoulvant, Denis
    El-Bouri, Wahbi
    Lip, Gregory Y. H.
    Fauchier, Laurent
    ARCHIVES OF CARDIOVASCULAR DISEASES, 2023, 116 (6-7) : 342 - 351
  • [26] Risks and outcomes of gastrointestinal malignancies in anticoagulated atrial fibrillation patients experiencing gastrointestinal bleeding
    Chao, T. F.
    Lip, G. Y. H.
    Chen, S. A.
    EUROPEAN HEART JOURNAL, 2020, 41 : 654 - 654
  • [27] Machine Learning Prediction for the Recurrence After Electrical Cardioversion of Patients With Persistent Atrial Fibrillation
    Kwon, Soonil
    Lee, Eunjung
    Ju, Hojin
    Ahn, Hyo-Jeong
    Lee, So-Ryoung
    Choi, Eue-Keun
    Suh, Jangwon
    Oh, Seil
    Rhee, Wonjong
    KOREAN CIRCULATION JOURNAL, 2023, 53 (10) : 677 - 689
  • [28] Improved Outcomes by Integrated Care of Anticoagulated Patients with Atrial Fibrillation Using the Simple ABC (Atrial Fibrillation Better Care) Pathway
    Proietti, Marco
    Romiti, Giulio Francesco
    Olshansky, Brian
    Lane, Deirdre A.
    Lip, Gregory Y. H.
    AMERICAN JOURNAL OF MEDICINE, 2018, 131 (11): : 1359 - +
  • [29] Improving dynamic stroke risk prediction in non-anticoagulated patients with and without atrial fibrillation: comparing common clinical risk scores and machine learning algorithms
    Lip, Gregory Y. H.
    Tran, George
    Genaidy, Ash
    Marroquin, Patricia
    Estes, Cara
    Landsheft, Jeremy
    EUROPEAN HEART JOURNAL-QUALITY OF CARE AND CLINICAL OUTCOMES, 2022, 8 (05) : 548 - 556
  • [30] Managing anticoagulated atrial fibrillation patients undergoing endoscopy
    Gorard, D. A.
    GUT, 2009, 58 (03) : 468 - 468