Hybrid Explainable Artificial Intelligence Models for Targeted Metabolomics Analysis of Diabetic Retinopathy

被引:3
|
作者
Yagin, Fatma Hilal [1 ]
Colak, Cemil [1 ]
Algarni, Abdulmohsen [2 ]
Gormez, Yasin [3 ]
Guldogan, Emek [1 ]
Ardigo, Luca Paolo [4 ]
机构
[1] Inonu Univ, Fac Med, Dept Biostat & Med Informat, TR-44280 Malatya, Turkiye
[2] King Khalid Univ, Dept Comp Sci, Abha 61421, Saudi Arabia
[3] Sivas Cumhuriyet Univ, Fac Econ & Adm Sci, Dept Management Informat Syst, TR-58140 Sivas, Turkiye
[4] NLA Univ Coll, Dept Teacher Educ, N-0166 Oslo, Norway
关键词
diabetic retinopathy; targeted metabolomics; hybrid explainable artificial intelligence; explainable deep learning; biomarkers; INTERVENTIONS; COMPLICATIONS; DISEASE;
D O I
10.3390/diagnostics14131364
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Diabetic retinopathy (DR) is a prevalent microvascular complication of diabetes mellitus, and early detection is crucial for effective management. Metabolomics profiling has emerged as a promising approach for identifying potential biomarkers associated with DR progression. This study aimed to develop a hybrid explainable artificial intelligence (XAI) model for targeted metabolomics analysis of patients with DR, utilizing a focused approach to identify specific metabolites exhibiting varying concentrations among individuals without DR (NDR), those with non-proliferative DR (NPDR), and individuals with proliferative DR (PDR) who have type 2 diabetes mellitus (T2DM). Methods: A total of 317 T2DM patients, including 143 NDR, 123 NPDR, and 51 PDR cases, were included in the study. Serum samples underwent targeted metabolomics analysis using liquid chromatography and mass spectrometry. Several machine learning models, including Support Vector Machines (SVC), Random Forest (RF), Decision Tree (DT), Logistic Regression (LR), and Multilayer Perceptrons (MLP), were implemented as solo models and in a two-stage ensemble hybrid approach. The models were trained and validated using 10-fold cross-validation. SHapley Additive exPlanations (SHAP) were employed to interpret the contributions of each feature to the model predictions. Statistical analyses were conducted using the Shapiro-Wilk test for normality, the Kruskal-Wallis H test for group differences, and the Mann-Whitney U test with Bonferroni correction for post-hoc comparisons. Results: The hybrid SVC + MLP model achieved the highest performance, with an accuracy of 89.58%, a precision of 87.18%, an F1-score of 88.20%, and an F-beta score of 87.55%. SHAP analysis revealed that glucose, glycine, and age were consistently important features across all DR classes, while creatinine and various phosphatidylcholines exhibited higher importance in the PDR class, suggesting their potential as biomarkers for severe DR. Conclusion: The hybrid XAI models, particularly the SVC + MLP ensemble, demonstrated superior performance in predicting DR progression compared to solo models. The application of SHAP facilitates the interpretation of feature importance, providing valuable insights into the metabolic and physiological markers associated with different stages of DR. These findings highlight the potential of hybrid XAI models combined with explainable techniques for early detection, targeted interventions, and personalized treatment strategies in DR management.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] The application of artificial intelligence in diabetic retinopathy: progress and prospects
    Xu, Xinjia
    Zhang, Mingchen
    Huang, Sihong
    Li, Xiaoying
    Kui, Xiaoyan
    Liu, Jun
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2024, 12
  • [42] Artificial Intelligence Approach for Diabetic Retinopathy Severity Detection
    Shalini R.
    Sasikala S.
    Informatica (Slovenia), 2022, 46 (08): : 195 - 204
  • [43] Artificial intelligence for diabetic retinopathy screening, prediction and management
    Gunasekeran, Dinesh V.
    Ting, Daniel S. W.
    Tan, Gavin S. W.
    Wong, Tien Y.
    CURRENT OPINION IN OPHTHALMOLOGY, 2020, 31 (05) : 357 - 365
  • [44] The impact of artificial intelligence in screening for diabetic retinopathy in India
    Ramachandran Rajalakshmi
    Eye, 2020, 34 : 420 - 421
  • [45] Diabetic retinopathy screening in the emerging era of artificial intelligence
    Jakob Grauslund
    Diabetologia, 2022, 65 : 1415 - 1423
  • [46] Artificial intelligence in diabetic retinopathy: A natural step to the future
    Padhy, Srikanta Kumar
    Takkar, Brijesh
    Chawla, Rohan
    Kumar, Atul
    INDIAN JOURNAL OF OPHTHALMOLOGY, 2019, 67 (07) : 1004 - +
  • [47] Correction to: Artificial intelligence for diabetic retinopathy screening: a review
    Andrzej Grzybowski
    Piotr Brona
    Gilbert Lim
    Paisan Ruamviboonsuk
    Gavin S. W. Tan
    Michael Abramoff
    Daniel S. W. Ting
    Eye, 2020, 34 : 604 - 604
  • [48] The impact of artificial intelligence in screening for diabetic retinopathy in India
    Rajalakshmi, Ramachandran
    EYE, 2020, 34 (03) : 420 - 421
  • [49] Explainable Artificial Intelligence for Cytological Image Analysis
    Roehrl, Stefan
    Maier, Hendrik
    Lengl, Manuel
    Klenk, Christian
    Heim, Dominik
    Knopp, Martin
    Schumann, Simon
    Hayden, Oliver
    Diepold, Klaus
    ARTIFICIAL INTELLIGENCE IN MEDICINE, AIME 2023, 2023, 13897 : 75 - 85
  • [50] Novel artificial intelligence algorithms for diabetic retinopathy and diabetic macular edema
    Yao, Jie
    Lim, Joshua
    Lim, Gilbert Yong San
    Ong, Jasmine Chiat Ling
    Ke, Yuhe
    Tan, Ting Fang
    Tan, Tien-En
    Vujosevic, Stela
    Ting, Daniel Shu Wei
    EYE AND VISION, 2024, 11 (01)