Some Defuzzification Methods for Interval Type-2 Pentagonal Fuzzy Numbers

被引:0
|
作者
Rahman, N. A. [1 ]
Rahim, N. [2 ]
Idris, R. [2 ,3 ]
Abdullah, L. [2 ]
机构
[1] Univ Malaysia Terengganu, STEM Fdn Ctr, Terengganu 21030, Malaysia
[2] Univ Malaysia Terengganu, Fac Comp Sci & Math, Terengganu 21030, Malaysia
[3] Special Interest Grp Modelling & Data Analyt SIGM, Terengganu 21030, Malaysia
来源
关键词
interval type-2 fuzzy numbers; pentagonal fuzzy number; defuzzification method; LOGIC SYSTEMS; AREA;
D O I
10.47836/mjms.18.2.08
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Interval type-2 pentagonal fuzzy numbers are developed from the pentagonal fuzzy numbers and interval-valued pentagonal fuzzy numbers concepts. Previous researchers have suggested that various defuzzification methods were used to transform pentagonal fuzzy numbers into crisp numbers. However, very little research discusses defuzzification methods for interval type-2 pentagonal fuzzy numbers. Five interval-tuple fuzzy numbers that act as the input transformed information are needed to obtain crisp numbers via defuzzification methods. Therefore, this study examined some defuzzification methods for developing interval type-2 pentagonal fuzzy numbers where interval type-2 pentagonal fuzzy numbers (input) are transformed into crisp numbers (output). In addition, a comparison between interval type-2 pentagonal fuzzy numbers and general pentagonal fuzzy numbers are provided to validate the consistency and efficiency of these defuzzification methods.
引用
收藏
页码:343 / 356
页数:14
相关论文
共 50 条
  • [21] Experimental Evaluation on Defuzzification of TSK-type-based Interval Type-2 Fuzzy Inference Systems
    Zhan, Tao
    Li, Wen-Tao
    Fan, Bing-Jiao
    Liu, Shuai
    [J]. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2023, 21 (04) : 1338 - 1348
  • [22] Experimental Evaluation on Defuzzification of TSK-type-based Interval Type-2 Fuzzy Inference Systems
    Tao Zhan
    Wen-Tao Li
    Bing-Jiao Fan
    Shuai Liu
    [J]. International Journal of Control, Automation and Systems, 2023, 21 : 1338 - 1348
  • [23] A unified method of defuzzification for type-2 fuzzy numbers with its application to multiobjective decision making
    Biswas A.
    De A.K.
    [J]. Granular Computing, 2018, 3 (4) : 301 - 318
  • [24] An Introduction to Z-Numbers with Interval Type-2 Fuzzy TOPSIS
    Zamri, Nurnadiah
    Naim, Syibrah
    Abdullah, Lazim
    Yusoff, Binyamin
    [J]. ADVANCED SCIENCE LETTERS, 2018, 24 (02) : 947 - 950
  • [25] A new approach for ranking of interval type-2 trapezoidal fuzzy numbers
    Gong, Yanbing
    Yang, Shuxin
    Dai, Liangliang
    Hu, Na
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2017, 32 (03) : 1891 - 1902
  • [26] Ranking of Interval Type-2 Fuzzy Numbers using Value and Ambiguity
    Chutia, Rituparna
    Saikia, Sunayana
    [J]. 2020 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PERFORMANCE EVALUATION (COMPE-2020), 2020, : 305 - 310
  • [28] On methods of defuzzification of parametrically represented fuzzy numbers
    Nasibov E.N.
    Mert A.
    [J]. Automatic Control and Computer Sciences, 2007, 41 (5) : 265 - 273
  • [29] INTERVAL TYPE-2 FUZZY ROUGH SETS AND INTERVAL TYPE-2 FUZZY CLOSURE SPACES
    Sharan, S.
    Tiwar, S. P.
    Yadav, V. K.
    [J]. IRANIAN JOURNAL OF FUZZY SYSTEMS, 2015, 12 (03): : 113 - 125
  • [30] A Solving Method for Fuzzy Linear Programming Problem with Interval Type-2 Fuzzy Numbers
    Javanmard, Moslem
    Nehi, Hassan Mishmast
    [J]. INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2019, 21 (03) : 882 - 891