Giant Carrier Mobility in a Room-Temperature Ferromagnetic VSi2N4 Monolayer

被引:4
|
作者
Qiao, Lei [1 ]
Li, Musen [1 ,2 ]
Cui, Yaning [1 ]
Xu, Shaowen [1 ]
Reimers, Jeffrey R. [1 ,2 ]
Ren, Wei [1 ,3 ]
机构
[1] Shanghai Univ, Inst Quantum Sci & Technol, Mat Genome Inst, Int Ctr Quantum & Mol Struct,Phys Dept, Shanghai 200444, Peoples R China
[2] Univ Technol Sydney, Dept Math & Phys Sci, Ultimo, NSW 2007, Australia
[3] Zhejiang Lab, Hangzhou 311100, Peoples R China
基金
澳大利亚研究理事会; 中国博士后科学基金; 美国国家科学基金会; 中国国家自然科学基金;
关键词
Effective mass; Carrier mobility; Strain engineering; Curie temperature; INTRINSIC FERROMAGNETISM; MODEL;
D O I
10.1021/acs.nanolett.4c01416
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Using density functional theory (DFT), we investigate that two possible phases of VSi2N4 (VSN) may be realized, one called the "H phase" corresponding to what is known from calculation and herein the other new "T phase" being stabilized by a biaxial tensile strain of 3%. Significantly, the H phase is predicted to display a giant carrier mobility of 1 x 10(6) cm(2) V-1 s(-1), which exceeds that for most 2D magnetic materials, with a Curie temperature (T-C) exceeding room temperature and a band gap of 2.01 eV at the K point. Following the H-T phase transition, the direct band gap shifts to the Gamma point and increases to 2.59 eV. The Monte Carlo (MC) simulations also indicate that T-C of the T phase VSN can be effectively modulated by strain, reaching room temperature under a biaxial strain of -4%. These results show that VSN should be a promising functional material for future nanoelectronics.
引用
收藏
页码:6403 / 6409
页数:7
相关论文
共 50 条
  • [31] RELATIVE IMPORTANCE OF PHONON SCATTERING TO CARRIER MOBILITY IN SI SURFACE-LAYER AT ROOM-TEMPERATURE
    CHENG, YC
    SULLIVAN, EA
    JOURNAL OF APPLIED PHYSICS, 1973, 44 (08) : 3619 - 3625
  • [32] GIANT ROOM-TEMPERATURE MAGNETOSTRICTIONS IN TBFE2 AND DYFE2
    CLARK, AE
    BELSON, HS
    PHYSICAL REVIEW B, 1972, 5 (09): : 3642 - &
  • [33] Record charge carrier mobility in a room-temperature discotic liquid-crystalline derivative of hexabenzocoronene
    van de Craats, AM
    Warman, JM
    Fechtenkötter, A
    Brand, JD
    Harbison, MA
    Müllen, K
    ADVANCED MATERIALS, 1999, 11 (17) : 1469 - 1472
  • [34] Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit
    Shuoguo Yuan
    Xin Luo
    Hung Lit Chan
    Chengcheng Xiao
    Yawei Dai
    Maohai Xie
    Jianhua Hao
    Nature Communications, 10
  • [35] Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit
    Yuan, Shuoguo
    Luo, Xin
    Chan, Hung Lit
    Xiao, Chengcheng
    Dai, Yawei
    Xie, Maohai
    Hao, Jianhua
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [36] Role of electronic correlations in room-temperature ferromagnetism of monolayer MnSe2
    Hong, Jeonghoon
    Kang, Chang-Jong
    Kim, Jeongwoo
    PHYSICAL REVIEW B, 2022, 106 (19)
  • [37] Room-Temperature Electron-Hole Liquid in Monolayer MoS2
    Yu, Yiling
    Bataller, Alexander W.
    Younts, Robert
    Yu, Yifei
    Li, Guoqing
    Puretzky, Alexander A.
    Geohegan, David B.
    Gundogdu, Kenan
    Cao, Linyou
    ACS NANO, 2019, 13 (09) : 10351 - 10358
  • [38] Defect effects on the electronic, valley, and magnetic properties of the two-dimensional ferrovalley material VSi2N4
    Liu, Ming-Yang
    Li, Guang-Qiang
    He, Yao
    Xiong, Kai
    DALTON TRANSACTIONS, 2024, 53 (25) : 10603 - 10617
  • [39] Janus Cr2BN Monolayer with Ferroelectricity and Room-Temperature Ferromagnetism
    Yan, Xu
    Wang, Junyuan
    Liu, Yong
    Yang, Guochun
    CHEMPHYSCHEM, 2024, 25 (18)
  • [40] Monolayer chromium dichloride: An anti-ferromagnetic semiconductor with a high N′eel temperature above room temperature
    Wang, Zhicui
    Zhang, Michang
    Wan, Wenhui
    Ge, Yanfeng
    Liu, Yong
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2023, 149