Giant Carrier Mobility in a Room-Temperature Ferromagnetic VSi2N4 Monolayer

被引:4
|
作者
Qiao, Lei [1 ]
Li, Musen [1 ,2 ]
Cui, Yaning [1 ]
Xu, Shaowen [1 ]
Reimers, Jeffrey R. [1 ,2 ]
Ren, Wei [1 ,3 ]
机构
[1] Shanghai Univ, Inst Quantum Sci & Technol, Mat Genome Inst, Int Ctr Quantum & Mol Struct,Phys Dept, Shanghai 200444, Peoples R China
[2] Univ Technol Sydney, Dept Math & Phys Sci, Ultimo, NSW 2007, Australia
[3] Zhejiang Lab, Hangzhou 311100, Peoples R China
基金
澳大利亚研究理事会; 中国博士后科学基金; 美国国家科学基金会; 中国国家自然科学基金;
关键词
Effective mass; Carrier mobility; Strain engineering; Curie temperature; INTRINSIC FERROMAGNETISM; MODEL;
D O I
10.1021/acs.nanolett.4c01416
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Using density functional theory (DFT), we investigate that two possible phases of VSi2N4 (VSN) may be realized, one called the "H phase" corresponding to what is known from calculation and herein the other new "T phase" being stabilized by a biaxial tensile strain of 3%. Significantly, the H phase is predicted to display a giant carrier mobility of 1 x 10(6) cm(2) V-1 s(-1), which exceeds that for most 2D magnetic materials, with a Curie temperature (T-C) exceeding room temperature and a band gap of 2.01 eV at the K point. Following the H-T phase transition, the direct band gap shifts to the Gamma point and increases to 2.59 eV. The Monte Carlo (MC) simulations also indicate that T-C of the T phase VSN can be effectively modulated by strain, reaching room temperature under a biaxial strain of -4%. These results show that VSN should be a promising functional material for future nanoelectronics.
引用
收藏
页码:6403 / 6409
页数:7
相关论文
共 50 条
  • [1] Mechanically strong and room-temperature magnetocaloric monolayer VSi2N4 semiconductor
    He, Weiwei
    Yin, Yan
    Tang, Ziming
    Wang, Xiaofan
    Yuan, Hang
    Gong, Qihua
    Yi, Min
    APPLIED PHYSICS LETTERS, 2024, 125 (02)
  • [2] Giant tunneling magnetoresistance in atomically thin VSi2N4/MoSi2N4/VSi2N4 magnetic tunnel junction
    Wu, Qingyun
    Ang, Lay Kee
    APPLIED PHYSICS LETTERS, 2022, 120 (02)
  • [3] Multifunctional Two-Dimensional VSi2N4/WSi2N4/VSi2N4 Photodetector Driven by the Photogalvanic Effect
    Shu, Li
    Qian, Liyu
    Ye, Xiang
    Xie, Yiqun
    PHYSICAL REVIEW APPLIED, 2022, 17 (05)
  • [4] Spin-valley coupling in a two-dimensional VSi2N4 monolayer
    Cui, Qirui
    Zhu, Yingmei
    Liang, Jinghua
    Cui, Ping
    Yang, Hongxin
    PHYSICAL REVIEW B, 2021, 103 (08)
  • [5] Magnetic properties of NbSi2N4, VSi2N4, and VSi2P4 monolayers
    Akanda, Md Rakibul Karim
    Lake, Roger K.
    APPLIED PHYSICS LETTERS, 2021, 119 (05)
  • [6] Observation of Room-Temperature Magnetoresistance in Monolayer MoS2 by Ferromagnetic Gating
    Jie, Wenjing
    Yang, Zhibin
    Zhang, Fan
    Bai, Gongxun
    Leung, Chi Wah
    Hao, Jianhua
    ACS NANO, 2017, 11 (07) : 6950 - 6958
  • [7] Room-temperature spin valve effect in the TiCr2N4 monolayer
    Ye, Haoshen
    Liu, Lisha
    Bai, Dongmei
    Zhang, G. P.
    Zhang, Junting
    Wang, Jianli
    JOURNAL OF MATERIALS CHEMISTRY C, 2022, 10 (34) : 12422 - 12427
  • [8] Tunable Valley and Spin Splittings in VSi2N4 Bilayers
    Liang, Li
    Yang, Ying
    Wang, Xiaohui
    Li, Xiao
    NANO LETTERS, 2023, 23 (03) : 858 - 862
  • [9] Giant room-temperature nonlinearities in a monolayer Janus topological semiconductor
    Shi, Jiaojian
    Xu, Haowei
    Heide, Christian
    HuangFu, Changan
    Xia, Chenyi
    de Quesada, Felipe
    Shen, Hongzhi
    Zhang, Tianyi
    Yu, Leo
    Johnson, Amalya
    Liu, Fang
    Shi, Enzheng
    Jiao, Liying
    Heinz, Tony
    Ghimire, Shambhu
    Li, Ju
    Kong, Jing
    Guo, Yunfan
    Lindenberg, Aaron M.
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [10] Giant room-temperature nonlinearities in a monolayer Janus topological semiconductor
    Jiaojian Shi
    Haowei Xu
    Christian Heide
    Changan HuangFu
    Chenyi Xia
    Felipe de Quesada
    Hongzhi Shen
    Tianyi Zhang
    Leo Yu
    Amalya Johnson
    Fang Liu
    Enzheng Shi
    Liying Jiao
    Tony Heinz
    Shambhu Ghimire
    Ju Li
    Jing Kong
    Yunfan Guo
    Aaron M. Lindenberg
    Nature Communications, 14