Towards a unified test for the intercept of autoregressive models

被引:0
|
作者
Zhang, Jing [1 ]
Fan, Yawen [2 ]
Wang, Yu [3 ]
Liu, Xiaohui [4 ]
Li, Bo [3 ]
机构
[1] Jiangxi Univ Finance & Econ, Sch Software & Internet Things Engn, Nanchang, Jiangxi, Peoples R China
[2] East China Jiaotong Univ, Sch Econ & Management, Nanchang, Jiangxi, Peoples R China
[3] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
[4] Jiangxi Univ Finance & Econ, Sch Stat & Data Sci, Key Lab Data Sci Finance & Econ, Nanchang, Jiangxi, Peoples R China
关键词
Autoregressive model; intercept; empirical likelihood; unified test; C12; C22; UNIT-ROOT; INTERVALS;
D O I
10.1080/02664763.2024.2352756
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It has long been an open problem to provide a unified test for the intercept of autoregressive (AR) models. In this paper, we use the empirical likelihood method to solve this issue. It turns out that the resulting test statistic always converges in distribution to a standard chi-squared distribution under the null hypothesis, whether the AR process is stationary or nonstationary, and with or without an intercept. The asymptotic distribution under the local alternative hypothesis is also derived under some mild conditions. Several simulations as well as a real data example are used to show how well the suggested test performs in terms of size and power on a finite sample.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] A unified unit root test regardless of intercept
    Yang, Bingduo
    Liu, Xiaohui
    Long, Wei
    Peng, Liang
    [J]. ECONOMETRIC REVIEWS, 2023, 42 (06) : 540 - 555
  • [2] A Unified test for the Intercept of a Predictive Regression Model
    Liu, Xiaohui
    Liu, Yuzi
    Rao, Yao
    Lu, Fucai
    [J]. OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 2021, 83 (02) : 571 - 588
  • [3] A Unified Test for the AR Error Structure of an Autoregressive Model
    Wei, Xinyi
    Liu, Xiaohui
    Fan, Yawen
    Tan, Li
    Liu, Qing
    [J]. AXIOMS, 2022, 11 (12)
  • [4] UNIFIED INTERVAL ESTIMATION FOR RANDOM COEFFICIENT AUTOREGRESSIVE MODELS
    Hill, Jonathan
    Peng, Liang
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2014, 35 (03) : 282 - 297
  • [5] A nonparametric test of conditional autoregressive heteroscedasticity for threshold autoregressive models
    Chen, M
    Chen, GM
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2001, 29 (04): : 649 - 666
  • [6] A TEST OF LINEARITY FOR FUNCTIONAL AUTOREGRESSIVE MODELS
    POGGI, JM
    PORTIER, B
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (01): : 113 - 116
  • [7] A test of linearity for functional autoregressive models
    Poggi, JM
    Portier, B
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 537 - 538
  • [8] Diagnostic test for unstable autoregressive models
    Lee, Sangyeol
    Kim, Eunhee
    Kim, Youngjin
    [J]. STATISTICS, 2007, 41 (03) : 181 - 201
  • [9] Specification Test for Spatial Autoregressive Models
    Su, Liangjun
    Qu, Xi
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2017, 35 (04) : 572 - 584
  • [10] Towards a unified conception of the test of reality
    Leclaire, M
    Scarfone, D
    [J]. REVUE FRANCAISE DE PSYCHANALYSE, 2000, 64 (03): : 885 - +