A hierarchical attention network integrating multi-scale relationship for drug response prediction

被引:2
|
作者
Wang, Xiaoqi [1 ]
Wen, Yuqi [2 ]
Zhang, Yixin [2 ]
Dai, Chong [2 ,3 ]
Yang, Yaning [1 ]
Bo, Xiaochen [2 ]
He, Song [2 ]
Peng, Shaoliang [1 ]
机构
[1] Hunan Univ, Coll Comp Sci & Elect Engn, Changsha 410082, Peoples R China
[2] Inst Hlth Serv & Transfus Med, Dept Biotechnol, Beijing 100850, Peoples R China
[3] Beijing Univ Chem Technol, Coll Life Sci & Technol, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
Drug response prediction; Deep learning; Hierarchical attention network; Multi-scale relationship; LUNG-CANCER; DISCOVERY; IDENTIFICATION; PRALATREXATE; SENSITIVITY; COMBINATION; RESISTANCE; INHIBITORS; ENZYMES; SYSTEM;
D O I
10.1016/j.inffus.2024.102485
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Anticancer drug response prediction with deep learning technology has become the foundation of precision medicine. It is essential for anticancer drug response prediction to incorporate multi -scale relationships within feature items and biomedical entities. Therefore, we propose MultiDRP that develops the hierarchical attention networks integrating multi -scale relationship for drug response prediction. MultiDRP can fuse both internal correlation of feature items and external relationship of biomedical entities by hierarchically integrating graph attention and self -attention networks to improve the anticancer drug response prediction. A variety of results showed that MultiDRP generated the great representation by integrating multi -scale relationships, and achieved higher performance compared to existing methods on various prediction scenarios. The results of network proximity, gene ontology biological process (GOBP) enrichment, and drug pathway association analysis show that MultiDRP can accurately screen the sensitive and resistant drugs for cancer cell lines. In vitro experiments, eight novel drugs predicted by MultiDRP exhibited high sensitivity to lung cancer cell line NCI -H23, seven of which showed IC 50 values of less than 10 nM. These results further suggest that MultiDRP can serve as a powerful tool for anticancer drug response prediction. The source data and code are available at https://github.com/pengsl-lab/MultiDRP.git.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Multi-scale detection of pulmonary nodules by integrating attention mechanism
    Cao, Zhenguan
    Li, Rui
    Yang, Xun
    Fang, Liao
    Li, Zhuoqin
    Li, Jinbiao
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [22] MSTAN: multi-scale spatiotemporal attention network with adaptive relationship mining for remaining useful life prediction in complex systems
    Huang, Kai
    Jia, Guozhu
    Jiao, Zeyu
    Luo, Tingyu
    Wang, Qun
    Cai, Yingjie
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (12)
  • [23] Multi-scale modeling temporal hierarchical attention for sequential recommendation
    Huang, Nana
    Hu, Ruimin
    Wang, Xiaochen
    Ding, Hongwei
    INFORMATION SCIENCES, 2023, 641
  • [24] Attention to fine-grained information: hierarchical multi-scale network for retinal vessel segmentation
    Chengzhi Lyu
    Guoqing Hu
    Dan Wang
    The Visual Computer, 2022, 38 : 345 - 355
  • [25] Attention to fine-grained information: hierarchical multi-scale network for retinal vessel segmentation
    Lyu, Chengzhi
    Hu, Guoqing
    Wang, Dan
    VISUAL COMPUTER, 2022, 38 (01): : 345 - 355
  • [26] Attention-Based Multi-Scale Prediction Network for Time-Series Data
    Junjie Li
    Lin Zhu
    Yong Zhang
    Da Guo
    Xingwen Xia
    China Communications, 2022, 19 (05) : 286 - 301
  • [27] Tool Wear Prediction Based on a Multi-Scale Convolutional Neural Network with Attention Fusion
    Huang, Qingqing
    Wu, Di
    Huang, Hao
    Zhang, Yan
    Han, Yan
    INFORMATION, 2022, 13 (10)
  • [28] MCDAN: A Multi-Scale Context-Enhanced Dynamic Attention Network for Diffusion Prediction
    Wang, Xiaowen
    Wang, Lanjun
    Su, Yuting
    Zhang, Yongdong
    Liu, An-An
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 7850 - 7862
  • [29] Attention-Based Multi-Scale Prediction Network for Time-Series Data
    Li, Junjie
    Zhu, Lin
    Zhang, Yong
    Guo, Da
    Xia, Xingwen
    CHINA COMMUNICATIONS, 2022, 19 (05) : 286 - 301
  • [30] MTSF: Multi-Scale Temporal-Spatial Fusion Network for Driver Attention Prediction
    Jin, Lisheng
    Ji, Bingdong
    Guo, Baicang
    Wang, Huanhuan
    Han, Zhuotong
    Liu, Xingchen
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2025, 26 (02) : 1494 - 1509