An extended nonconforming finite element method for the coupled Darcy-Stokes problem

被引:0
|
作者
Cao, Pei [1 ,2 ]
Chen, Jinru [2 ,3 ]
机构
[1] Nanjing Tech Univ, Sch Phys & Math Sci, Nanjing 211816, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Key Lab NSLSCS, Minist Educ, Nanjing 210023, Peoples R China
[3] Jiangsu Second Normal Univ, Sch Math Sci, Nanjing 211200, Peoples R China
基金
芬兰科学院; 中国国家自然科学基金;
关键词
The coupled Darcy-Stokes problem; Extended nonconforming finite element; Inf-sup condition; Optimal convergence; Curved interface; CROUZEIX-RAVIART ELEMENT; POROUS-MEDIA; FLUID-FLOW; MODEL; DISCRETIZATION;
D O I
10.1016/j.cam.2024.116092
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An extended nonconforming finite element method for solving the coupled Darcy-Stokes problem with straight or curved interfaces is proposed and analyzed. The approach applies the same Crouzeix-Raviart discretization in both regions. By introducing some stabilization terms, the discrete inf-sup condition and optimal a priori estimate are derived. In the end, some numerical experiments are presented to demonstrate the theoretical results.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] A conforming mixed finite element method for the Navier-Stokes/Darcy coupled problem
    Discacciati, Marco
    Oyarzua, Ricardo
    NUMERISCHE MATHEMATIK, 2017, 135 (02) : 571 - 606
  • [22] Analysis of the pressure projection stabilization method for the Darcy and coupled Darcy-Stokes flows
    Chen, Zhangxin
    Wang, Zhen
    Zhu, Liping
    Li, Jian
    COMPUTATIONAL GEOSCIENCES, 2013, 17 (06) : 1079 - 1091
  • [23] The Darcy-Stokes topology optimization problem
    Wiker, Niclas
    Klarbring, Anders
    Borrvall, Thomas
    IUTAM SYMPOSIUM ON TOPOLOGICAL DESIGN OPTIMIZATION OF STRUCTURES, MACHINES AND MATERIALS: STATUS AND PERSPECTIVES, 2006, 137 : 551 - +
  • [24] Augmented Interface Systems for the Darcy-Stokes Problem
    Discacciati, M. (marco.discacciati@upc.edu), 2013, Springer Verlag (91):
  • [25] Uniformly Convergent Cubic Nonconforming Element For Darcy–Stokes Problem
    Shao-chun Chen
    Li-na Dong
    Ji-kun Zhao
    Journal of Scientific Computing, 2017, 72 : 231 - 251
  • [26] A posteriori error estimate for the H(div) conforming mixed finite element for the coupled Darcy-Stokes system
    Chen, Wenbin
    Wang, Yanqiu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 255 : 502 - 516
  • [27] A pressure-robust mixed finite element method for the coupled Stokes-Darcy problem
    Lv, Deyong
    Rui, Hongxing
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 436
  • [28] A weak Galerkin finite element method for a coupled Stokes-Darcy problem on general meshes
    Li, Rui
    Gao, Yali
    Li, Jian
    Chen, Zhangxin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 334 : 111 - 127
  • [29] Discontinuous Finite Volume Element Method for a Coupled Non-stationary Stokes–Darcy Problem
    Rui Li
    Yali Gao
    Jian Li
    Zhangxin Chen
    Journal of Scientific Computing, 2018, 74 : 693 - 727
  • [30] Residual-based a posteriori error estimates for a nonconforming finite element discretization of the Stokes–Darcy coupled problem: isotropic discretization
    Nicaise S.
    Ahounou B.
    Houedanou W.
    Afrika Matematika, 2016, 27 (3-4) : 701 - 729