Cooper-pair beam splitter as a feasible source of entangled electrons

被引:1
|
作者
Sharmila, B. [1 ]
Souza, F. M. [2 ]
Vasconcelos, H. M. [3 ]
Sanz, L. [2 ]
机构
[1] Univ Warwick, Dept Phys, Coventry CV4 7AL, England
[2] Univ Fed Uberlandia, Inst Fis, BR-38400902 Uberlandia, MG, Brazil
[3] Univ Fed Ceara, Dept Engn Teleinformat, Fortaleza, Ceara, Brazil
关键词
QUANTUM; STATE;
D O I
10.1103/PhysRevA.109.062439
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate the generation of an entangled electron pair emerging from a system composed of two quantum dots attached to a superconductor Cooper-pair beam splitter. We take into account three processes: crossed Andreev reflection, cotunneling, and Coulomb interaction. Together, these processes play crucial roles in the formation of entangled electronic states, with electrons being in spatially separated quantum dots. By using perturbation theory, we derive an analytical effective model that allows a simple picture of the intricate process behind the formation of the entangled state. Several entanglement quantifiers, including quantum mutual information, negativity, and concurrence, are employed to validate our findings. Finally, we define and calculate the covariance associated with the detection of two electrons, each originating from one of the quantum dots with a specific spin value. The time evolution of this observable follows the dynamics of all entanglement quantifiers, thus suggesting that it can be a useful tool for mapping the creation of entangled electrons in future applications within quantum information protocols.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] NONLOCAL ISOTOPIC REPRESENTATION OF THE COOPER-PAIR IN SUPERCONDUCTIVITY
    ANIMALU, AOE
    SANTILLI, RM
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1995, : 175 - 187
  • [32] Decoherence in a pair of long-lived Cooper-pair boxes
    Zaretskey, V.
    Novikov, S.
    Suri, B.
    Kim, Z.
    Wellstood, F. C.
    Palmer, B. S.
    JOURNAL OF APPLIED PHYSICS, 2013, 114 (09)
  • [33] Entanglement of nanoelectromechanical oscillators by Cooper-pair tunneling
    Walter, Stefan
    Budich, Jan Carl
    Eisert, Jens
    Trauzettel, Bjoern
    PHYSICAL REVIEW B, 2013, 88 (03)
  • [34] Ballistic Graphene Cooper Pair Splitter
    Pandey, P.
    Danneau, R.
    Beckmann, D.
    PHYSICAL REVIEW LETTERS, 2021, 126 (14)
  • [35] The single Cooper-pair box as a charge qubit
    Bladh, K
    Duty, T
    Gunnarsson, D
    Delsing, P
    NEW JOURNAL OF PHYSICS, 2005, 7
  • [36] Quasiparticle poisoning in a single Cooper-pair box
    Schneiderman, J. F.
    Delsing, P.
    Johansson, G.
    D Shaw, M.
    Bozler, H. M.
    Echternach, P. M.
    LOW TEMPERATURE PHYSICS, PTS A AND B, 2006, 850 : 931 - +
  • [37] Cooper-pair current in the presence of flux noise
    Solinas, P.
    Mottonen, M.
    Salmilehto, J.
    Pekola, J. P.
    PHYSICAL REVIEW B, 2012, 85 (02):
  • [38] COOPER-PAIR TUNNELING INTO A QUANTUM HALL FLUID
    FISHER, MPA
    PHYSICAL REVIEW B, 1994, 49 (20): : 14550 - 14553
  • [39] High-Efficiency Cooper-Pair Splitter in Quantum Anomalous Hall Insulator Proximity-Coupled with Superconductor
    Zhang, Ying-Tao
    Deng, Xinzhou
    Sun, Qing-Feng
    Qiao, Zhenhua
    SCIENTIFIC REPORTS, 2015, 5
  • [40] Cooper-pair propagation and superconducting correlations in graphene
    Gonzalez, J.
    Perfetto, E.
    PHYSICAL REVIEW B, 2007, 76 (15):