Black eagle optimizer: a metaheuristic optimization method for solving engineering optimization problems

被引:3
|
作者
Zhang, Haobin [1 ,2 ]
San, Hongjun [1 ,2 ]
Chen, Jiupeng [1 ,2 ]
Sun, Haijie [1 ,2 ]
Ding, Lin [1 ,2 ]
Wu, Xingmei [1 ,2 ]
机构
[1] Kunming Univ Sci & Technol, Fac Mech & Elect Engn, Kunming 650500, Peoples R China
[2] Key Lab Adv Equipment Intelligent Mfg Technol Yunn, Kunming 650500, Peoples R China
关键词
Black eagle optimizer; Convergence accuracy; Convergence speed; Stability; Engineering problems; ALGORITHM;
D O I
10.1007/s10586-024-04586-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a new intelligent optimization algorithm named Black Eagle Optimizer (BEO) based on the biological behaviour of the black eagle. The BEO algorithm combines the biological laws of the black eagle and mathematical transformations to guide the search behaviour of the particles. The highly adaptive BEO algorithm has strong optimisation capabilities due to its unique algorithmic structure and novel iterative approach. In the performance testing experiments of the BEO algorithm, this paper firstly conducts the parametric analysis experiments of the BEO algorithm, then analyses the complexity of the BEO algorithm, and finally conducts a comprehensive testing of the performance of the BEO algorithm on 30 CEC2017 test functions with the widest variety of functions and 12 newest CEC2022 test functions, and its performance is compared with the seven state-of-the-art optimization algorithms. The test results show that the convergence accuracy of the BEO algorithm reaches the theoretical value in 100% of unimodal functions, the convergence accuracy is higher than the comparison algorithm in 78.95% of complex functions, and the standard deviation ranks in the top three in 90.48% of functions, which demonstrates the outstanding local optimisation ability, global optimisation ability and stability of BEO algorithm. Meanwhile, the BEO algorithm also maintains a fast convergence speed. However, the complexity analysis shows that the BEO algorithm has the disadvantage of slightly higher complexity. In order to verify the optimisation ability of the BEO algorithm in real engineering problems, we used the BEO algorithm to deal with four complex engineering design problems. The experimental results show that the BEO algorithm has excellent convergence accuracy and stability when dealing with real engineering problems, but the real-time performance is slightly below average. Therefore, the BEO algorithm is optimal for handling non-real-time engineering optimisation problems. The source code of the BEO algorithm is available at https://github.com/haobinzhang123/A-metaheuristic-algorithm.
引用
收藏
页码:12361 / 12393
页数:33
相关论文
共 50 条
  • [31] Genetic Engineering Algorithm (GEA): An Efficient Metaheuristic Algorithm for Solving Combinatorial Optimization Problems
    Sohrabi, Majid
    Fathollahi-Fard, Amir M.
    Gromov, V. A.
    AUTOMATION AND REMOTE CONTROL, 2024, 85 (03) : 252 - 262
  • [32] Numeric Crunch Algorithm: a new metaheuristic algorithm for solving global and engineering optimization problems
    Thapliyal, Shivankur
    Kumar, Narender
    SOFT COMPUTING, 2023, 27 (22) : 16611 - 16657
  • [33] Numeric Crunch Algorithm: a new metaheuristic algorithm for solving global and engineering optimization problems
    Shivankur Thapliyal
    Narender Kumar
    Soft Computing, 2023, 27 : 16611 - 16657
  • [34] Search and rescue optimization algorithm: A new optimization method for solving constrained engineering optimization problems
    Shabani, Amir
    Asgarian, Behrouz
    Salido, Miguel
    Gharebaghi, Saeed Asil
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 161
  • [35] OOBO: A New Metaheuristic Algorithm for Solving Optimization Problems
    Dehghani, Mohammad
    Trojovska, Eva
    Trojovsky, Pavel
    Malik, Om Parkash
    BIOMIMETICS, 2023, 8 (06)
  • [36] Energy valley optimizer: a novel metaheuristic algorithm for global and engineering optimization
    Azizi, Mahdi
    Aickelin, Uwe
    Khorshidi, Hadi A.
    Shishehgarkhaneh, Milad Baghalzadeh
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [37] A novel Human Conception Optimizer for solving optimization problems
    Acharya, Debasis
    Das, Dushmanta Kumar
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [38] Energy valley optimizer: a novel metaheuristic algorithm for global and engineering optimization
    Mahdi Azizi
    Uwe Aickelin
    Hadi A. Khorshidi
    Milad Baghalzadeh Shishehgarkhaneh
    Scientific Reports, 13 (1)
  • [39] A novel Human Conception Optimizer for solving optimization problems
    Debasis Acharya
    Dushmanta Kumar Das
    Scientific Reports, 12
  • [40] Effective optimizer development for solving combinatorial optimization problems
    Blaschek, Guenther
    Scheidl, Thomas
    Breitschopf, Christoph
    PROCEEDINGS OF THE 11TH WSEAS INTERNATIONAL CONFERENCE ON SYSTEMS, VOL 2: SYSTEMS THEORY AND APPLICATIONS, 2007, : 310 - +