K-means and gaussian mixture modeling with a separation constraint

被引:0
|
作者
Jiang, He [1 ]
Arias-Castro, Ery [2 ]
机构
[1] Calif State Polytech Univ Pomona, Dept Math & Stat, Pomona, CA 91768 USA
[2] Univ Calif San Diego, Dept Math, La Jolla, CA USA
基金
美国国家科学基金会;
关键词
Clustering; Dynamic programming; Gaussian mixture models; K-means; Separation constraint; MAXIMUM-LIKELIHOOD-ESTIMATION; RESTRICTED EM ALGORITHM;
D O I
10.1080/03610918.2024.2354747
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of clustering with K-means and Gaussian mixture models with a constraint on the separation between the centers in the context of real-valued data. We first propose a dynamic programming approach to solving the K-means problem with a separation constraint on the centers, building on Wang and Song (2011). In the context of fitting a Gaussian mixture model, we then propose an EM algorithm that incorporates such a constraint. A separation constraint can help regularize the output of a clustering algorithm, and we provide both simulated and real data examples to illustrate this point.
引用
收藏
页数:15
相关论文
共 50 条
  • [22] Oversampling Method Based on Gaussian Distribution and K-Means Clustering
    Hassan, Masoud Muhammed
    Eesa, Adel Sabry
    Mohammed, Ahmed Jameel
    Arabo, Wahab Kh
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 69 (01): : 451 - 469
  • [23] Exact Acceleration of K-Means plus plus and K-Means∥
    Raff, Edward
    [J]. PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 2928 - 2935
  • [24] K-Means Cloning: Adaptive Spherical K-Means Clustering
    Hedar, Abdel-Rahman
    Ibrahim, Abdel-Monem M.
    Abdel-Hakim, Alaa E.
    Sewisy, Adel A.
    [J]. ALGORITHMS, 2018, 11 (10):
  • [25] Fuzzy modeling by hyperbolic fuzzy k-means clustering
    Watanabe, N
    [J]. PROCEEDINGS OF THE 2002 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOL 1 & 2, 2002, : 1528 - 1531
  • [26] Empirical Evaluation of K-Means, Bisecting K-Means, Fuzzy C-Means and Genetic K-Means Clustering Algorithms
    Banerjee, Shreya
    Choudhary, Ankit
    Pal, Somnath
    [J]. 2015 IEEE INTERNATIONAL WIE CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (WIECON-ECE), 2015, : 172 - 176
  • [27] k-means algorithm and mixture distributions for locating faults in power systems
    Mora-Florez, J.
    Cormane-Angarita, J.
    Ordonez-Plata, G.
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2009, 79 (05) : 714 - 721
  • [28] Clustering of Image Data Using K-Means and Fuzzy K-Means
    Rahmani, Md. Khalid Imam
    Pal, Naina
    Arora, Kamiya
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2014, 5 (07) : 160 - 163
  • [29] Deep k-Means: Jointly clustering with k-Means and learning representations
    Fard, Maziar Moradi
    Thonet, Thibaut
    Gaussier, Eric
    [J]. PATTERN RECOGNITION LETTERS, 2020, 138 : 185 - 192
  • [30] K and starting means for k-means algorithm
    Fahim, Ahmed
    [J]. JOURNAL OF COMPUTATIONAL SCIENCE, 2021, 55