K-means and gaussian mixture modeling with a separation constraint

被引:0
|
作者
Jiang, He [1 ]
Arias-Castro, Ery [2 ]
机构
[1] Calif State Polytech Univ Pomona, Dept Math & Stat, Pomona, CA 91768 USA
[2] Univ Calif San Diego, Dept Math, La Jolla, CA USA
基金
美国国家科学基金会;
关键词
Clustering; Dynamic programming; Gaussian mixture models; K-means; Separation constraint; MAXIMUM-LIKELIHOOD-ESTIMATION; RESTRICTED EM ALGORITHM;
D O I
10.1080/03610918.2024.2354747
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of clustering with K-means and Gaussian mixture models with a constraint on the separation between the centers in the context of real-valued data. We first propose a dynamic programming approach to solving the K-means problem with a separation constraint on the centers, building on Wang and Song (2011). In the context of fitting a Gaussian mixture model, we then propose an EM algorithm that incorporates such a constraint. A separation constraint can help regularize the output of a clustering algorithm, and we provide both simulated and real data examples to illustrate this point.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] k-means as a variational EM approximation of Gaussian mixture models
    Luecke, Joerg
    Forster, Dennis
    [J]. PATTERN RECOGNITION LETTERS, 2019, 125 : 349 - 356
  • [2] In search of deterministic methods for initializing K-means and Gaussian mixture clustering
    Su, Ting
    Dy, Jennifer G.
    [J]. INTELLIGENT DATA ANALYSIS, 2007, 11 (04) : 319 - 338
  • [3] Application of k-means and Gaussian mixture model for classification of seismic activities in Istanbul
    Kuyuk, H. S.
    Yildirim, E.
    Dogan, E.
    Horasan, G.
    [J]. NONLINEAR PROCESSES IN GEOPHYSICS, 2012, 19 (04) : 411 - 419
  • [4] On k-means iterations and Gaussian clusters
    de Amorim, Renato Cordeiro
    Makarenkov, Vladimir
    [J]. NEUROCOMPUTING, 2023, 553
  • [5] K-Means with large and noisy constraint sets
    Pelleg, Dan
    Baras, Dorit
    [J]. MACHINE LEARNING: ECML 2007, PROCEEDINGS, 2007, 4701 : 674 - +
  • [6] Unsupervised Machine Learning for Ultrasonic Flaw Detection using Gaussian Mixture Modeling, K-Means Clustering and Mean Shift Clustering
    Virupakshappa, Kushal
    Oruklu, Erdal
    [J]. 2019 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2019, : 647 - 649
  • [7] The Informativeness of k-Means for Learning Mixture Models
    Liu, Zhaoqiang
    Tan, Vincent Y. F.
    [J]. 2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, : 26 - 30
  • [8] The Informativeness of k-Means for Learning Mixture Models
    Liu, Zhaoqiang
    Tan, Vincent Y. F.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (11) : 7460 - 7479
  • [9] Algorithms for K-means Clustering Problem with Balancing Constraint
    Wang Shouqiang
    Chi Zengxiao
    Zhan Sheng
    [J]. CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 3967 - 3972
  • [10] Comparative Study of K-means, Gaussian Mixture Model, Fuzzy C-means algorithms for Brain Tumor Segmentation
    Baid, U.
    Talbar, S.
    Talbar, S.
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING 2016 (ICCASP 2016), 2017, 137 : 592 - 597