SCL-WC: Cross-Slide Contrastive Learning for Weakly-Supervised Whole-Slide Image Classification

被引:0
|
作者
Wang, Xiyue [1 ,2 ]
Xiang, Jinxi [3 ]
Zhang, Jun [3 ]
Yang, Sen [3 ]
Yang, Zhongyi [3 ]
Wang, Minghui [1 ,2 ]
Zhang, Jing [1 ]
Yang, Wei [3 ]
Huang, Junzhou [3 ]
Han, Xiao [3 ]
机构
[1] Sichuan Univ, Coll Biomed Engn, Chengdu 610065, Peoples R China
[2] Sichuan Univ, Coll Comp Sci, Chengdu 610065, Peoples R China
[3] Tencent AI Lab, Shenzhen 518057, Peoples R China
基金
国家重点研发计划;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Weakly-supervised whole-slide image (WSI) classification (WSWC) is a challenging task where a large number of unlabeled patches (instances) exist within each WSI (bag) while only a slide label is given. Despite recent progress for the multiple instance learning (MIL)-based WSI analysis, the major limitation is that it usually focuses on the easy-to-distinguish diagnosis-positive regions while ignoring positives that occupy a small ratio in the entire WSI. To obtain more discriminative features, we propose a novel weakly-supervised classification method based on cross-slide contrastive learning (called SCL-WC), which depends on task-agnostic self-supervised feature pre-extraction and task-specific weakly-supervised feature refinement and aggregation for WSI-level prediction. To enable both intra-WSI and inter-WSI information interaction, we propose a positive-negative-aware module (PNM) and a weakly-supervised cross-slide contrastive learning (WSCL) module, respectively. The WSCL aims to pull WSIs with the same disease types closer and push different WSIs away. The PNM aims to facilitate the separation of tumor-like patches and normal ones within each WSI. Extensive experiments demonstrate state-of-the-art performance of our method in three different classification tasks (e.g., over 2% of AUC in Camelyon16, 5% of F1 score in BRACS, and 3% of AUC in DiagSet). Our method also shows superior flexibility and scalability in weakly-supervised localization and semi-supervised classification experiments (e.g., first place in the BRIGHT challenge). Our code will be available at https://github.com/Xiyue-Wang/SCL-WC.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] A pyramidal deep learning pipeline for kidney whole-slide histology images classification
    Abdeltawab, Hisham
    Khalifa, Fahmi
    Mohammed, Mohammed
    Cheng, Liang
    Gondim, Dibson
    El-Baz, Ayman
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [42] A pyramidal deep learning pipeline for kidney whole-slide histology images classification
    Hisham Abdeltawab
    Fahmi Khalifa
    Mohammed Ghazal
    Liang Cheng
    Dibson Gondim
    Ayman El-Baz
    Scientific Reports, 11
  • [43] Grading of Prostate Whole-slide Images Using Weak Self-supervised Learning
    Ghorbani, Amirata
    Esteva, Andre
    Zou, James
    2022 56TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2022, : 1439 - 1443
  • [44] Dual attention model with reinforcement learning for classification of histology whole-slide images
    Tissue Image Analytics Centre, University of Warwick, Coventry, United Kingdom
    不详
    Comput. Med. Imaging Graph., 2024,
  • [45] Deep learning for bone marrow cell detection and classification on whole-slide images
    Wang, Ching-Wei
    Huang, Sheng-Chuan
    Lee, Yu-Ching
    Shen, Yu-Jie
    Meng, Shwu-Ing
    Gaol, Jeff L.
    Medical Image Analysis, 2022, 75
  • [46] Deep learning for bone marrow cell detection and classification on whole-slide images
    Wang, Ching-Wei
    Huang, Sheng-Chuan
    Lee, Yu-Ching
    Shen, Yu-Jie
    Meng, Shwu-Ing
    Gaol, Jeff L.
    MEDICAL IMAGE ANALYSIS, 2022, 75
  • [47] Federated learning on whole slide images using weakly supervised computational pathology
    Lu, Ming Yang
    Kong, Dehan
    Lipkova, Jana
    Chen, Richard J.
    Singh, Rajendra
    Chen, Tiffany Y.
    Williamson, Drew F. K.
    Mahmood, Faisal
    CLINICAL CANCER RESEARCH, 2021, 27 (05)
  • [48] Weakly Supervised Deep Ordinal Cox Model for Survival Prediction From Whole-Slide Pathological Images
    Shao, Wei
    Wang, Tongxin
    Huang, Zhi
    Han, Zhi
    Zhang, Jie
    Huang, Kun
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (12) : 3739 - 3747
  • [49] Improvement of Whole-Slide Pathological Image Recognition Method Based on Deep Learning
    Ma, Xiaojun
    Liu, Haixia
    Niu, Yanxiong
    Zhang, Chengfen
    Liu, Di
    2018 11TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 2, 2018, : 269 - 272
  • [50] Weakly-Supervised Contrastive Learning in Path Manifold for Monte Carlo Image Reconstruction
    Cho, In-Young
    Huo, Yuchi
    Yoon, Sung-Eui
    ACM TRANSACTIONS ON GRAPHICS, 2021, 40 (04):