A Methodology for Shielding-Gas Selection in Wire Arc Additive Manufacturing with Stainless Steel

被引:0
|
作者
Teixeira, Felipe Ribeiro [1 ]
Jorge, Vinicius Lemes [1 ]
Scotti, Fernando Matos [2 ]
Siewert, Erwan [2 ]
Scotti, Americo [1 ,3 ]
机构
[1] Univ Fed Uberlandia, Ctr Res & Dev Welding Proc, BR-38400901 Uberlandia, Brazil
[2] Linde GmbH, Linde Technol, Dept Arc Technol, D-85716 Munich, Germany
[3] Univ West, Dept Engn Sci, S-46186 Trollhattan, Sweden
关键词
arc-based AM; shielding gas; thin wall; austenitic stainless steel; metal transfer index; delta-ferrite; MECHANICAL-PROPERTIES; FERRITE CONTENT; METAL TRANSFER; MICROSTRUCTURE; GMAW; BEHAVIOR; ARGON;
D O I
10.3390/ma17133328
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The main objective of this work was to propose and evaluate a methodology for shielding-gas selection in additive manufacturing assisted by wire arc additive manufacturing (WAAM) with an austenitic stainless steel as feedstock. To validate the proposed methodology, the impact of multi-component gases was valued using three different Ar-based blends recommended as shielding gas for GMA (gas metal arc) of the target material, using CMT (cold metal transfer) as the process version. This assessment considered features that potentially affect the building of the case study of thin walls, such as metal transfer regularity, deposition time, and geometrical and metallurgical characteristics. Different settings of wire-feed speeds were conceived to maintain a similar mean current (first constraint for comparison's sake) among the three gas blends. This approach implied different mean wire-feed speeds and simultaneously forced a change in the deposition speed to maintain the same amount of material deposited per unit of length (second comparison constraint). The composition of the gases affects the operational performance of the shielding gases. It was concluded that by following this methodology, shielding-gas selection decision-making is possible based on the perceived characteristics of the different commercial blends.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Influence of Shielding Gas on the Microstructure and Mechanical Properties of Duplex Stainless Steel in Wire Arc Additive Manufacturing
    Akbarzadeh, Elina
    Yurtisik, Koray
    Gur, C. Hakan
    Saeid, Tohid
    Tavangar, Reza
    METALS AND MATERIALS INTERNATIONAL, 2024, 30 (07) : 1977 - 1996
  • [2] Tandem metal inert gas process for high productivity wire arc additive manufacturing in stainless steel
    Martina, Filomeno
    Ding, Jialuo
    Williams, Stewart
    Caballero, Armando
    Pardal, Goncalo
    Quintino, Luisa
    ADDITIVE MANUFACTURING, 2019, 25 : 545 - 550
  • [3] Studies on Super Duplex Stainless Steel Manufactured by Wire Arc Additive Manufacturing
    A. Rajesh Kannan
    N. Siva Shanmugam
    K. Devendranath Ramkumar
    V. Rajkumar
    Transactions of the Indian Institute of Metals, 2021, 74 : 1673 - 1681
  • [4] Effect of Sigma Phase in Wire Arc Additive Manufacturing of Superduplex Stainless Steel
    Akselsen, Odd M.
    Bjorge, Ruben
    anes, Hakon Wiik
    Ren, Xiaobo
    Nyhus, Bard
    METALS, 2021, 11 (12)
  • [5] Characterization of an austenitic stainless steel preform deposited by wire arc additive manufacturing
    Souza, Lidia B. O.
    Santos, Maria R. N.
    Garcia, Regina P.
    Fernandes, Diandro B.
    Vilarinho, Louriel O.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 123 (9-10): : 3673 - 3686
  • [6] Studies on Super Duplex Stainless Steel Manufactured by Wire Arc Additive Manufacturing
    Kannan, A. Rajesh
    Shanmugam, N. Siva
    Ramkumar, K. Devendranath
    Rajkumar, V
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2021, 74 (07) : 1673 - 1681
  • [7] Numerical and Experimental Investigations on Deposition of Stainless Steel in Wire Arc Additive Manufacturing
    Kumar, Ashish
    Maji, Kuntal
    INTERNATIONAL JOURNAL OF MANUFACTURING MATERIALS AND MECHANICAL ENGINEERING, 2021, 11 (04) : 40 - 56
  • [8] Characterization of an austenitic stainless steel preform deposited by wire arc additive manufacturing
    Lídia B. O. Souza
    Maria R. N. Santos
    Regina P. Garcia
    Diandro B. Fernandes
    Louriel O. Vilarinho
    The International Journal of Advanced Manufacturing Technology, 2022, 123 : 3673 - 3686
  • [9] Wire Arc Additive Manufacturing of Stainless Steels: A Review
    Jin, Wanwan
    Zhang, Chaoqun
    Jin, Shuoya
    Tian, Yingtao
    Wellmann, Daniel
    Liu, Wen
    APPLIED SCIENCES-BASEL, 2020, 10 (05):
  • [10] Wire Arc Additive Manufacturing using ER2594 Duplex Stainless Steel
    Wu, Suisong
    Guo, Chun
    Liu, Wumeng
    Ying, Meng
    Li, Yun
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2023, 76 (01) : 249 - 258