VvLBD39, a grape LBD transcription factor, regulates plant response to salt and drought stress

被引:2
|
作者
Chen, Liandi [1 ]
Ji, Xinglong [1 ]
Luo, Chunxiang [1 ]
Song, Xiao [1 ]
Leng, Xiangpeng [1 ]
Ma, Yujiao [3 ]
Wang, Jinling [4 ]
Fang, Jinggui [1 ,2 ]
Ren, Yiran [1 ]
机构
[1] Qingdao Agr Univ, Inst Grape Sci & Engn, Coll Hort, Qingdao 266109, Peoples R China
[2] Nanjing Agr Univ, Coll Hort, Nanjing 210095, Peoples R China
[3] Shandong Acad Agr Sci, Shandong Acad Grape, Jinan, Peoples R China
[4] Peoples Govt Boping, Integrated Serv Ctr Agr Forestry & Water, Liaocheng 252100, Peoples R China
基金
中国国家自然科学基金;
关键词
LBD transcription factor; VvLBD39; Salt and drought stress; ROS scavenging; Abscisic acid; Grape; LOB DOMAIN PROTEINS; CALLUS FORMATION; OSMOTIC-STRESS; GENE FAMILY; ARABIDOPSIS; EXPRESSION; IDENTIFICATION; TOLERANCE; INTERACTS; DEFICIT;
D O I
10.1016/j.envexpbot.2024.105918
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Grape (Vitis vinifera L.), as an important deciduous perennial fruit tree, constantly confronts various abiotic stresses such as salinity and drought. The lateral organ boundaries domain (LBD) proteins are a class of plantspecific transcription factors that play pivotal roles in regulating plant growth and responding to abiotic stress. However, the biological function of the LBD transcription factor in grape remains poorly understood. Here, we cloned and characterized the VvLBD39 gene from grape, which contained a highly conserved LBD domain and localized to the cell nucleus. qRT-PCR analyses showed that the expression of VvLBD39 was downregulated upon exposure to NaCl, polyethylene glycol 6000 (PEG6000) and abscisic acid (ABA) treatments, respectively. Overexpression of VvLBD39 in grape calli and Arabidopsis resulted in hypersensitivity to PEG6000 and NaCl stress. Moreover, VvLBD39-overexpressing transgenic tobacco exhibited decreased tolerance to drought and salt stress, as well as insensitivity to exogenous ABA. After drought and salt stress treatments, the chlorophyll content, root length and antioxidant enzyme activity of the transgenic tobacco were lower than those of the wildtype (WT). Conversely, malonic dialdehyde (MDA) content, electronic conductivity, hydrogen peroxide (H2O2) content and superoxide anion (O2- ) productivity were markedly elevated in the transgenic tobacco compared to the WT. Further investigations found that VvLBD39 had a negative impact on stomatal closure, ABA biosynthesis and ABA signaling under drought and salt treatments. In addition, the expression of genes related to reactive oxygen species (ROS) scavenging and stress response were significantly downregulated in VvLBD39 transgenic tobacco. Taken together, these results indicated that VvLBD39 functions as a negative regulator of salt and drought tolerance, making it a promising target for drought and salt resistance breeding.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] A Novel Heat Shock Transcription Factor (ZmHsf08) Negatively Regulates Salt and Drought Stress Responses in Maize
    Wang, Jing
    Chen, Li
    Long, Yun
    Si, Weina
    Cheng, Beijiu
    Jiang, Haiyang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (21)
  • [22] The bZIP Transcription Factor GmbZIP15 Negatively Regulates Salt- and Drought-Stress Responses in Soybean
    Zhang, Man
    Liu, Yanhui
    Cai, Hanyang
    Guo, Mingliang
    Chai, Mengnan
    She, Zeyuan
    Ye, Li
    Cheng, Yan
    Wang, Bingrui
    Qin, Yuan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (20) : 1 - 19
  • [23] A LBD transcription factor from moso bamboo, PheLBD12, regulates plant height in transgenic rice
    Wu, Min
    Wang, Yufang
    Zhang, Shunran
    Xiang, Yan
    PLANT MOLECULAR BIOLOGY, 2024, 114 (05)
  • [24] A moso bamboo transcription factor, Phehdz1, positively regulates the drought stress response of transgenic rice
    Gao, Yameng
    Liu, Huanlong
    Zhang, Kaimei
    Li, Fei
    Wu, Min
    Xiang, Yan
    PLANT CELL REPORTS, 2021, 40 (01) : 187 - 204
  • [25] A moso bamboo transcription factor, Phehdz1, positively regulates the drought stress response of transgenic rice
    Yameng Gao
    Huanlong Liu
    Kaimei Zhang
    Fei Li
    Min Wu
    Yan Xiang
    Plant Cell Reports, 2021, 40 : 187 - 204
  • [26] A Ramie bZIP Transcription Factor BnbZIP2 Is Involved in Drought, Salt, and Heavy Metal Stress Response
    Huang, Chengjian
    Zhou, Jinghua
    Jie, Yucheng
    Xing, Hucheng
    Zhong, Yingli
    Yu, Weilin
    She, Wei
    Ma, Yushen
    Liu, Zehang
    Zhang, Ying
    DNA AND CELL BIOLOGY, 2016, 35 (12) : 776 - 786
  • [27] The transcription factor SlAREB1 confers drought, salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato
    Orellana, Sandra
    Yanez, Monica
    Espinoza, Analia
    Verdugo, Isabel
    Gonzalez, Enrique
    Ruiz-Lara, Simon
    Casaretto, Jose A.
    PLANT CELL AND ENVIRONMENT, 2010, 33 (12): : 2191 - 2208
  • [28] StMAPKK5 Positively Regulates Response to Drought and Salt Stress in Potato
    Luo, Yu
    Wang, Kaitong
    Zhu, Liping
    Zhang, Ning
    Si, Huaijun
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (07)
  • [29] CsLBD37, a LBD/ASL transcription factor, affects nitrate response and flowering of tea plant
    Teng, Rui-Min
    Yang, Ni
    Liu, Chun-Fang
    Chen, Yi
    Wang, Yong-Xin
    Zhuang, Jing
    SCIENTIA HORTICULTURAE, 2022, 306
  • [30] Maize Transcription Factor ZmHsf28 Positively Regulates Plant Drought Tolerance
    Liu, Lijun
    Zhang, Yuhan
    Tang, Chen
    Shen, Qinqin
    Fu, Jingye
    Wang, Qiang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (09)