Zero-Shot Parameter Learning Network for Low-Light Image Enhancement in Permanently Shadowed Regions

被引:0
|
作者
Zhang, Fengqi [1 ]
Tu, Zhigang [1 ,2 ]
Hao, Weifeng [3 ]
Chen, Yihao [1 ]
Li, Fei [1 ,3 ]
Ye, Mao [1 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan 430079, Peoples R China
[2] Wuhan Univ, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
[3] Wuhan Univ, Chinese Antarctic Ctr Surveying & Mapping, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Moon; Lighting; Brightness; Image enhancement; Reflection; Optical sensors; Optical reflection; Low-light image enhancement (LIE); parameter learning; permanently shadowed region (PSR); USM sharpening; zero-shot learning; HISTOGRAM EQUALIZATION; FUSION;
D O I
10.1109/TGRS.2024.3422314
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Obtaining high-visibility images of the lunar polar permanently shadowed region (PSR) is quite important for internal landforms and material existence exploration. However, PSR images usually have poor quality due to a lack of sufficient illumination. Existing researches, that attempt to address this problem, face challenges caused by relying on virtual assumptions, manual processing, and paired data. To solve these problems, we aim to avoid using paired datasets and directly optimize PSR images, and accordingly propose a zero-shot parameter learning model (ZSPL-PSR) for PSR image enhancement. Our ZSPL-PSR, which enhances PSR images by estimating parameters to adjust image properties, consists of a parameter learning network and a parameter weight learning structure. Particularly, first, a parameter learning network that integrates robust information is constructed to separately estimate the midtone brightness parameters, shadow brightness parameters, and contrast parameters. Where these parameters are beneficial for iteratively improve the overall brightness, shadow brightness, and contrast of the image. Second, a parameter weight learning structure is exploited to coordinate the priority of different parameter maps. In addition, to highlight the terrain details in the enhanced PSR image, we use USM sharpening for postprocessing. The experimental results display the fully interpretable enhanced PSR maps of the lunar north and south poles and their sharpened versions, showcasing rich landforms in PSR. To validate the model performance, a benchmark PSR testing set has been constructed, and extensive comparisons conducted on it demonstrated that ZSPL-PSR exceeds other zero-shot learning methods significantly in image quality. Our code is available at https://github.com/dl-zfq/ZSPL-PSR.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] A deep Retinex network for underwater low-light image enhancement
    Ji, Kai
    Lei, Weimin
    Zhang, Wei
    MACHINE VISION AND APPLICATIONS, 2023, 34 (06)
  • [42] Adaptive lightweight Transformer network for low-light image enhancement
    Meng, De
    Lei, Zhichun
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (6-7) : 5365 - 5375
  • [43] Low-Light Image Enhancement via a Deep Hybrid Network
    Ren, Wenqi
    Liu, Sifei
    Ma, Lin
    Xu, Qianqian
    Xu, Xiangyu
    Cao, Xiaochun
    Du, Junping
    Yang, Ming-Hsuan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (09) : 4364 - 4375
  • [44] Deep Pyramid Network for Low-Light Endoscopic Image Enhancement
    Yue, Guanghui
    Gao, Jie
    Cong, Runmin
    Zhou, Tianwei
    Li, Leida
    Wang, Tianfu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (05) : 3834 - 3845
  • [45] Feature spatial pyramid network for low-light image enhancement
    Song, Xijuan
    Huang, Jijiang
    Cao, Jianzhong
    Song, Dawei
    VISUAL COMPUTER, 2023, 39 (01): : 489 - 499
  • [46] Low-Light Image Enhancement Using a Simple Network Structure
    Matsui, Takuro
    Ikehara, Masaaki
    IEEE ACCESS, 2023, 11 : 65507 - 65516
  • [47] FRN: Fusion and recalibration network for low-light image enhancement
    Kavinder Singh
    Ashutosh Pandey
    Akshat Agarwal
    Mohit Kumar Agarwal
    Aditya Shankar
    Anil Singh Parihar
    Multimedia Tools and Applications, 2024, 83 : 12235 - 12252
  • [48] A Joint Network for Low-Light Image Enhancement Based on Retinex
    Jiang, Yonglong
    Zhu, Jiahe
    Li, Liangliang
    Ma, Hongbing
    COGNITIVE COMPUTATION, 2024, : 3241 - 3259
  • [49] Deep Color Consistent Network for Low-Light Image Enhancement
    Zhang, Zhao
    Zheng, Huan
    Hong, Richang
    Xu, Mingliang
    Yan, Shuicheng
    Wang, Meng
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 1889 - 1898
  • [50] Channel splitting attention network for low-light image enhancement
    Lu, Bibo
    Pang, Zebang
    Gu, Yanan
    Zheng, Yanmei
    IET IMAGE PROCESSING, 2022, 16 (05) : 1403 - 1414