Obtaining high-visibility images of the lunar polar permanently shadowed region (PSR) is quite important for internal landforms and material existence exploration. However, PSR images usually have poor quality due to a lack of sufficient illumination. Existing researches, that attempt to address this problem, face challenges caused by relying on virtual assumptions, manual processing, and paired data. To solve these problems, we aim to avoid using paired datasets and directly optimize PSR images, and accordingly propose a zero-shot parameter learning model (ZSPL-PSR) for PSR image enhancement. Our ZSPL-PSR, which enhances PSR images by estimating parameters to adjust image properties, consists of a parameter learning network and a parameter weight learning structure. Particularly, first, a parameter learning network that integrates robust information is constructed to separately estimate the midtone brightness parameters, shadow brightness parameters, and contrast parameters. Where these parameters are beneficial for iteratively improve the overall brightness, shadow brightness, and contrast of the image. Second, a parameter weight learning structure is exploited to coordinate the priority of different parameter maps. In addition, to highlight the terrain details in the enhanced PSR image, we use USM sharpening for postprocessing. The experimental results display the fully interpretable enhanced PSR maps of the lunar north and south poles and their sharpened versions, showcasing rich landforms in PSR. To validate the model performance, a benchmark PSR testing set has been constructed, and extensive comparisons conducted on it demonstrated that ZSPL-PSR exceeds other zero-shot learning methods significantly in image quality. Our code is available at https://github.com/dl-zfq/ZSPL-PSR.