Deep learning for anomaly detection in log data: A survey

被引:0
|
作者
Landauer, Max [1 ]
Onder, Sebastian [2 ]
Skopik, Florian [1 ]
Wurzenberger, Markus [1 ]
机构
[1] Austrian Inst Technol, Giefinggasse 4, A-1210 Vienna, Austria
[2] Vienna Univ Technol, Karlsplatz 13, A-1040 Vienna, Austria
来源
关键词
Log data; Anomaly detection; Neural networks; Deep learning; SYSTEM; NETWORK; SEQUENCE; SUPPORT;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic log file analysis enables early detection of relevant incidents such as system failures. In particular, self-learning anomaly detection techniques capture patterns in log data and subsequently report unexpected log event occurrences to system operators without the need to provide or manually model anomalous scenarios in advance. Recently, an increasing number of approaches leveraging deep learning neural networks for this purpose have been presented. These approaches have demonstrated superior detection performance in comparison to conventional machine learning techniques and simultaneously resolve issues with unstable data formats. However, there exist many different architectures for deep learning and it is non -trivial to encode raw and unstructured log data to be analyzed by neural networks. We therefore carry out a systematic literature review that provides an overview of deployed models, data pre-processing mechanisms, anomaly detection techniques, and evaluations. The survey does not quantitatively compare existing approaches but instead aims to help readers understand relevant aspects of different model architectures and emphasizes open issues for future work.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Deep Learning for Anomaly Detection
    Pang, Guansong
    Aggarwal, Charu
    Shen, Chunhua
    Sebe, Nicu
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (06) : 2282 - 2286
  • [22] Deep learning on temporal-spectral data for anomaly detection
    Ma, King
    Leung, Henry
    Jalilian, Ehsan
    Huang, Daniel
    [J]. GROUND/AIR MULTISENSOR INTEROPERABILITY, INTEGRATION, AND NETWORKING FOR PERSISTENT ISR VIII, 2017, 10190
  • [23] Deep Learning for Anomaly Detection
    Wang, Ruoying
    Nie, Kexin
    Wang, Tie
    Yang, Yang
    Long, Bo
    [J]. PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM '20), 2020, : 894 - 896
  • [24] Deep Learning for Anomaly Detection
    Wang, Ruoying
    Nie, Kexin
    Chang, Yen-Jung
    Gong, Xinwei
    Wang, Tie
    Yang, Yang
    Long, Bo
    [J]. KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 3569 - 3570
  • [25] Anomaly Detection in Electricity Consumption Data using Deep Learning
    Kardi, Mohammad
    AlSkaif, Tarek
    Tekinerdogan, Bedir
    Catalao, Joao P. S.
    [J]. 2021 21ST IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2021 5TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I&CPS EUROPE), 2021,
  • [26] Data anomaly detection with automatic feature selection and deep learning
    Jiang, Huachen
    Ge, Ensheng
    Wan, Chunfeng
    Li, Shu
    Quek, Ser Tong
    Yang, Kang
    Ding, Youliang
    Xue, Songtao
    [J]. STRUCTURES, 2023, 57
  • [27] Deep Imbalanced Data Learning Approach for Video Anomaly Detection
    Ratre, Avinash
    Pankajakshan, Vinod
    [J]. 2022 NATIONAL CONFERENCE ON COMMUNICATIONS (NCC), 2022, : 391 - 396
  • [28] Deep Learning-Based Anomaly Detection in Video Surveillance: A Survey
    Duong, Huu-Thanh
    Le, Viet-Tuan
    Hoang, Vinh Truong
    [J]. SENSORS, 2023, 23 (11)
  • [29] Deep Learning Techniques for Anomaly based Intrusion Detection System: A Survey
    Kumar, Yogendra
    Chouhan, Lokesh
    Subba, Basant
    [J]. 2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PERFORMANCE EVALUATION (COMPE-2021), 2021, : 915 - 920
  • [30] Robust Log-Based Anomaly Detection on Unstable Log Data
    Zhang, Xu
    Xu, Yong
    Lin, Qingwei
    Qiao, Bo
    Zhang, Hongyu
    Dang, Yingnong
    Xie, Chunyu
    Yang, Xinsheng
    Cheng, Qian
    Li, Ze
    Chen, Junjie
    He, Xiaoting
    Yao, Randolph
    Lou, Jian-Guang
    Chintalapati, Murali
    Shen, Furao
    Zhang, Dongmei
    [J]. ESEC/FSE'2019: PROCEEDINGS OF THE 2019 27TH ACM JOINT MEETING ON EUROPEAN SOFTWARE ENGINEERING CONFERENCE AND SYMPOSIUM ON THE FOUNDATIONS OF SOFTWARE ENGINEERING, 2019, : 807 - 817