DUEL: Duplicate Elimination on Active Memory for Self-Supervised Class-Imbalanced Learning

被引:0
|
作者
Choi, Won-Seok [1 ]
Lee, Hyundo [1 ]
Han, Dong-Sig [1 ]
Park, Junseok [1 ]
Koo, Heeyeon [2 ]
Zhang, Byoung-Tak [1 ,3 ]
机构
[1] Seoul Natl Univ, Seoul, South Korea
[2] Yonsei Univ, Seoul, South Korea
[3] AI Inst Seoul Natl Univ AIIS, Seoul, South Korea
关键词
WORKING-MEMORY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent machine learning algorithms have been developed using well-curated datasets, which often require substantial cost and resources. On the other hand, the direct use of raw data often leads to overfitting towards frequently occurring class information. To address class imbalances cost-efficiently, we propose an active data filtering process during self-supervised pre-training in our novel framework, Duplicate Elimination (DUEL). This framework integrates an active memory inspired by human working memory and introduces distinctiveness information, which measures the diversity of the data in the memory, to optimize both the feature extractor and the memory. The DUEL policy, which replaces the most duplicated data with new samples, aims to enhance the distinctiveness information in the memory and thereby mitigate class imbalances. We validate the effectiveness of the DUEL framework in class-imbalanced environments, demonstrating its robustness and providing reliable results in downstream tasks. We also analyze the role of the DUEL policy in the training process through various metrics and visualizations.
引用
收藏
页码:11579 / 11587
页数:9
相关论文
共 50 条
  • [41] A genetic algorithm-based approach for class-imbalanced learning
    Dong, Shangyan
    Wu, Yongcheng
    THIRD INTERNATIONAL WORKSHOP ON PATTERN RECOGNITION, 2018, 10828
  • [42] Weight Decision Algorithm for Oversampling Technique on Class-Imbalanced Learning
    Kang, Young-Il
    Won, Sangchul
    INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2010), 2010, : 182 - 186
  • [43] Gated Self-supervised Learning for Improving Supervised Learning
    Fuadi, Erland Hillman
    Ruslim, Aristo Renaldo
    Wardhana, Putu Wahyu Kusuma
    Yudistira, Novanto
    2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024, 2024, : 611 - 615
  • [44] Self-Supervised Dialogue Learning
    Wu, Jiawei
    Wang, Xin
    Wang, William Yang
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 3857 - 3867
  • [45] Class incremental learning with self-supervised pre-training and prototype learning
    Liu, Wenzhuo
    Wu, Xin-Jian
    Zhu, Fei
    Yu, Ming-Ming
    Wang, Chuang
    Liu, Cheng-Lin
    PATTERN RECOGNITION, 2025, 157
  • [46] Longitudinal self-supervised learning
    Zhao, Qingyu
    Liu, Zixuan
    Adeli, Ehsan
    Pohl, Kilian M.
    MEDICAL IMAGE ANALYSIS, 2021, 71
  • [47] Self-supervised learning model
    Saga, Kazushie
    Sugasaka, Tamami
    Sekiguchi, Minoru
    Fujitsu Scientific and Technical Journal, 1993, 29 (03): : 209 - 216
  • [48] Credal Self-Supervised Learning
    Lienen, Julian
    Huellermeier, Eyke
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [49] Self-Supervised Learning for Recommendation
    Huang, Chao
    Xia, Lianghao
    Wang, Xiang
    He, Xiangnan
    Yin, Dawei
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 5136 - 5139
  • [50] Quantum self-supervised learning
    Jaderberg, B.
    Anderson, L. W.
    Xie, W.
    Albanie, S.
    Kiffner, M.
    Jaksch, D.
    QUANTUM SCIENCE AND TECHNOLOGY, 2022, 7 (03):