The complexity of learning linear temporal formulas from examples

被引:0
|
作者
Fijalkow, Nathanael [1 ,2 ]
Lagarde, Guillaume [1 ]
机构
[1] Univ Bordeaux, LaBRI, CNRS, Bordeaux, France
[2] Alan Turing Inst, London, England
关键词
passive learning; automata learning; linear temporal logic; approximation algorithms;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we initiate the study of the computational complexity of learning linear temporal logic (LTL) formulas from examples. We construct approximation algorithms for fragments of LTL and prove hardness results; in particular we obtain tight bounds for the fragment containing only the next operator and conjunctions, and prove NP-hardness results for many fragments.
引用
收藏
页码:237 / 250
页数:14
相关论文
共 50 条
  • [21] The complexity of generalized satisfiability for linear temporal logic
    Bauland, Michael
    Schneider, Thomas
    Schnoor, Henning
    Schnoor, Ilka
    Vollmer, Heribert
    FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATIONAL STRUCTURES, PROCEEDINGS, 2007, 4423 : 48 - +
  • [22] THE COMPLEXITY OF GENERALIZED SATISFIABILITY FOR LINEAR TEMPORAL LOGIC
    Bauland, Michael
    Schneider, Thomas
    Schnoor, Henning
    Schnoor, Ilka
    Vollmer, Heribert
    LOGICAL METHODS IN COMPUTER SCIENCE, 2009, 5 (01)
  • [23] Inversion formulas and linear complexity algorithm for diagonal plus semiseparable matrices
    Eidelman, Y
    Gohberg, I
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1997, 33 (04) : 69 - 79
  • [25] Checking linear temporal formulas on sequential recursive Petri nets
    Haddad, S
    Poitrenaud, D
    EIGHTH INTERNATIONAL SYMPOSIUM ON TEMPORAL REPRESENTATION AND REASONING, PROCEEDINGS, 2001, : 198 - 205
  • [26] Learning Linear Temporal Properties
    Neider, Daniel
    Gavran, Ivan
    PROCEEDINGS OF THE 2018 18TH CONFERENCE ON FORMAL METHODS IN COMPUTER AIDED DESIGN (FMCAD), 2018, : 148 - 157
  • [27] TeLEx: learning signal temporal logic from positive examples using tightness metric
    Jha, Susmit
    Tiwari, Ashish
    Seshia, Sanjit A.
    Sahai, Tuhin
    Shankar, Natarajan
    FORMAL METHODS IN SYSTEM DESIGN, 2019, 54 (03) : 364 - 387
  • [28] TeLEx: learning signal temporal logic from positive examples using tightness metric
    Susmit Jha
    Ashish Tiwari
    Sanjit A. Seshia
    Tuhin Sahai
    Natarajan Shankar
    Formal Methods in System Design, 2019, 54 : 364 - 387
  • [29] Characterising Modal Formulas with Examples
    Ten Cate, Balder
    Koudijs, Raoul
    ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2024, 25 (02)
  • [30] On the complexity of learning for spiking neurons with temporal coding
    Maass, W
    Schmitt, M
    INFORMATION AND COMPUTATION, 1999, 153 (01) : 26 - 46