The complexity of learning linear temporal formulas from examples

被引:0
|
作者
Fijalkow, Nathanael [1 ,2 ]
Lagarde, Guillaume [1 ]
机构
[1] Univ Bordeaux, LaBRI, CNRS, Bordeaux, France
[2] Alan Turing Inst, London, England
关键词
passive learning; automata learning; linear temporal logic; approximation algorithms;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we initiate the study of the computational complexity of learning linear temporal logic (LTL) formulas from examples. We construct approximation algorithms for fragments of LTL and prove hardness results; in particular we obtain tight bounds for the fragment containing only the next operator and conjunctions, and prove NP-hardness results for many fragments.
引用
收藏
页码:237 / 250
页数:14
相关论文
共 50 条
  • [1] THE COMPUTATIONAL-COMPLEXITY OF SATISFIABILITY OF TEMPORAL HORN FORMULAS IN PROPOSITIONAL LINEAR-TIME TEMPORAL LOGIC
    CHEN, CC
    LIN, IP
    INFORMATION PROCESSING LETTERS, 1993, 45 (03) : 131 - 136
  • [2] A fuzzy method for learning simple Boolean formulas from examples
    Apolloni, B
    Brega, A
    Malchiodi, D
    Orovas, C
    Zanaboni, AM
    Computational Intelligence for Modelling and Prediction, 2005, 2 : 367 - 381
  • [3] Behaviour examples for synthesizing automaton models by temporal formulas
    Pashchenko, Dmitry, V
    Martyshkin, Alexey, I
    Trokoz, Dmitry A.
    Pashchenko, Tatyana Yu
    Babich, Mikhail Yu
    Butaev, Mikhail M.
    NEXO REVISTA CIENTIFICA, 2021, 34 (01): : 61 - 73
  • [4] Embracing complexity in research on learning from examples and from problem solving
    Scheiter, Katharina
    APPLIED COGNITIVE PSYCHOLOGY, 2020, 34 (04) : 906 - 911
  • [5] Predicting transfer from examples: Subgoal learning versus complexity
    Catrambone, R
    INTERNATIONAL JOURNAL OF PSYCHOLOGY, 1996, 31 (3-4) : 2473 - 2473
  • [6] Complexity of learning in concept lattices from positive and negative examples
    Kuznetsov, SO
    DISCRETE APPLIED MATHEMATICS, 2004, 142 (1-3) : 111 - 125
  • [7] Learning Temporal Plan Preferences from Examples: An Empirical Study
    Seimetz, Valentin
    Eifler, Rebecca
    Hoffmann, Joerg
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 4160 - 4166
  • [8] Learning Interpretable Temporal Properties from Positive Examples Only
    Roy, Rajarshi
    Gaglione, Jean-Raphael
    Baharisangari, Nasim
    Neider, Daniel
    Xu, Zhe
    Topcu, Ufuk
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 5, 2023, : 6507 - 6515
  • [9] Translating Linear Temporal Logic Formulas into Automata
    Zhu Weijun
    Zhou Qinglei
    Zhang Haibin
    CHINA COMMUNICATIONS, 2012, 9 (06) : 100 - 113
  • [10] Learning deterministic even linear languages from positive examples
    Koshiba, T
    Makinen, E
    Takada, Y
    THEORETICAL COMPUTER SCIENCE, 1997, 185 (01) : 63 - 79