Multifunctional Zincophilic Hydrogel Electrolyte with Abundant Hydrogen Bonds for Zinc-Ion Capacitors and Supercapacitors

被引:19
|
作者
Cui, Shuzhen [1 ]
Miao, Wenxing [1 ]
Wang, Xiangbing [1 ]
Sun, Kanjun [2 ]
Peng, Hui [1 ]
Ma, Guofu [1 ]
机构
[1] Northwest Normal Univ, Coll Chem & Chem Engn, Key Lab Ecoenvironm Polymer Mat Gansu Prov, Key Lab Ecofunct Polymer Mat,Minist Educ, Lanzhou 730070, Peoples R China
[2] Lanzhou City Univ, Coll Chem & Chem Engn, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
hydrogel electrolyte; zwitterionic; zinc dendrite; molecular dynamics simulation; zinc-ion capacitors;
D O I
10.1021/acsnano.4c01304
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The new-generation flexible Zn-ion capacitors (ZICs) require multifunctionality and environmental adaptability for practical applications. This essentially means that hydrogel electrolytes are expected to possess superior mechanical properties, temperature resistance, and tunable interface properties to resist flexibility loss and performance degradation over a wide operating temperatures range. Herein, a multifunctional polyzwitterionic hydrogel electrolyte (PAM/LA/PSBMA) with wide operating temperatures, excellent tensile ability, high water retention, and self-adhesion is designed. Molecular dynamics simulations and experimental results show that polar functional groups (-COO-, -SO3-, -C=O, and -NHCO-) in the hydrogel can form abundant hydrogen bonds with water molecules, which can destroy the original hydrogen bonds (HBs) network between the water molecules and have a low freezing point. It can also form coordination with Zn2+, so that the deposition of Zn2+ electric field homogenization effectively alleviates the growth of Zn dendrites. On this basis, the constructed Zn//Zn cell can be stably cycled 290 h at 10 mA cm(-2) (1 mA h cm(-2)). The constructed ZICs and supercapacitor have a high specific capacitance, excellent energy density, good ionic conductivity, and long cycling stability. This study provides guidance on molecular design for the development of integrated multifunctional smart electronic devices that are environmentally adaptable, resistant to drying, and highly flexible.
引用
收藏
页码:12355 / 12366
页数:12
相关论文
共 50 条
  • [21] A self-adhesive, self-healing zwitterionic hydrogel electrolyte for high-voltage zinc-ion hybrid supercapacitors
    Zhang, Zhixin
    Gao, Yang
    Gao, Yiyan
    Jia, Fei
    Gao, Guanghui
    CHEMICAL ENGINEERING JOURNAL, 2023, 452
  • [22] Sulfonated hydrogel electrolyte enables dendrite-free zinc-ion batteries
    Hu, Yingqi
    Wang, Zhan
    Li, Yingzhi
    Liu, Peiwen
    Liu, Xinlong
    Liang, Guangxian
    Zhang, Di
    Fan, Xin
    Lu, Zhouguang
    Wang, Wenxi
    CHEMICAL ENGINEERING JOURNAL, 2024, 479
  • [23] A physically cross-linked carboxymethyl cellulose/chitosan hydrogel electrolyte with high ionic conductivity for zinc-ion hybrid supercapacitors
    Yang, Yujia
    Ni, Siyang
    Zhu, Jingqiao
    Xiao, Qiang
    Song, Xianliang
    Jin, Xiaojuan
    JOURNAL OF ENERGY STORAGE, 2025, 115
  • [24] Developing Thermoregulatory Hydrogel Electrolyte to Overcome Thermal Runaway in Zinc-Ion Batteries
    Meng, Yuan
    Zhang, Lifang
    Peng, Mingji
    Shen, Danni
    Zhu, Changhao
    Qian, Siyi
    Liu, Jie
    Cao, Yufeng
    Yan, Chenglin
    Zhou, Jinqiu
    Qian, Tao
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (46)
  • [25] Investigation of a Biomass Hydrogel Electrolyte Naturally Stabilizing Cathodes for Zinc-Ion Batteries
    Dong, Haobo
    Li, Jianwei
    Zhao, Siyu
    Jiao, Yiding
    Chen, Jintao
    Tan, Yeshu
    Brett, Dan J. L.
    He, Guanjie
    Parkin, Ivan P.
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (01) : 745 - 754
  • [26] A supramolecular gel polymer electrolyte for ultralong-life zinc-ion hybrid supercapacitors
    Yang, He
    Zhang, Jijian
    Yao, Jiale
    Zuo, Danying
    Xu, Jing
    Zhang, Hongwei
    JOURNAL OF ENERGY STORAGE, 2022, 53
  • [27] Materials Development in Hybrid Zinc-Ion Capacitors
    Jagadale, Ajay Dattu
    Rohit, Ravichandran Chitra
    Shinde, Surendra Krushna
    Kim, Dae-Young
    CHEMNANOMAT, 2021, 7 (10) : 1082 - 1098
  • [28] Zinc-ion engineered Plant-based multifunctional hydrogels for flexible wearable strain Sensors, Bio-electrodes and Zinc-ion hybrid capacitors
    Wang, Yang
    Jiang, Weikun
    Li, Jiao
    Ahommed, Md Sohel
    Wang, Chao
    Ji, Xingxiang
    Liu, Yu
    Yang, Guihua
    Ni, Yonghao
    Lyu, Gaojin
    CHEMICAL ENGINEERING JOURNAL, 2023, 465
  • [29] Low-temperature resistant self-healing hydrogel electrolyte for dendrite-free flexible zinc-ion hybrid supercapacitors
    Liu, Dan
    Cai, Bin
    Wang, Liying
    Gao, Yang
    Jiang, Yi
    Li, Xuesong
    Yang, Xijia
    Lu, Wei
    JOURNAL OF POWER SOURCES, 2024, 621
  • [30] Hydrogel electrolyte membrane with regulated pore effect to stabilize zinc anode in aqueous zinc-ion batteries
    Yan, Lei
    Zhang, Qi
    Zhang, Ze
    Li, Gui-Jie
    Jin, Yi
    Zhang, Xin-Lin
    Sun, Yan-Yun
    JOURNAL OF MEMBRANE SCIENCE, 2024, 690