Microstructure and Wear Properties of WMoNbTaV- Al2O3 High Entropy Alloy Prepared by Spark Plasma Sintering

被引:0
|
作者
Liu Meijun [1 ]
Xu Liujie [1 ,2 ]
Li Zhou [1 ]
Guo Mingyi [1 ]
Hu Jikang [1 ]
Shen Huahai [3 ]
机构
[1] Henan Univ Sci & Technol, Sch Mat Sci & Engn, Luoyang 471000, Peoples R China
[2] Henan Univ Sci & Technol, Henan Int Joint Lab High Temp Refractory Met Mat, Luoyang 471000, Peoples R China
[3] China Acad Engn Phys, Inst Nucl Phys & Chem, Mianyang 621900, Sichuan, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
spark plasma sintering; refractory high entropy alloy; microstructure; wear; MECHANICAL-PROPERTIES; LOW-DENSITY; FIELD;
D O I
10.12442/j.issn.1002-185X.20230049
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A new refractory high entropy alloy WMoNbTaV containing Al2O3 was prepared by spark plasma sintering. The effects of sintering temperature on densification behavior, phase structure, microstructure and wear resistance of the alloy were studied. The results show that when sintered at 1800. 1900 degrees C, the matrix of WMoNbTaV-Al2O3 has a single bcc phase structure, and the average grain size of Al2O3 is 1.15 mu m. With the increase in sintering temperature, the grain size of the alloy increases, the density and microhardness also increase, and the hardness reaches 7967.4 MPa when the sintering temperature is 1900 degrees C. The alloy sintered at 1900 degrees C has excellent wear resistance, and the wear amount is only half of that of the alloy sintered at 1800 degrees C. The wear resistance of WMoNbTaV-Al2O3 high entropy alloy is much higher than that of pure W material. When the abrasive particle size is 37.5 mu m, the wear mass loss of alloy sintered at 1900 degrees C is 0.9 mg, and the wear resistance of alloy is 83 times higher than that of pure W material.
引用
收藏
页码:1236 / 1244
页数:9
相关论文
共 50 条
  • [41] Microstructure and properties of W/Sm2O3 composites prepared spark plasma sintering
    Zhu, Xiao-Yong
    Zhang, Jun
    Luo, Lai-Ma
    Chen, Junling
    Cheng, Ji-Gui
    Wu, Yu-Cheng
    ADVANCED POWDER TECHNOLOGY, 2015, 26 (02) : 640 - 643
  • [42] Structure and properties of Al2O3/Graphene nanocomposite processed by spark plasma sintering
    Stolyarov, V. V.
    Misochenko, A. A.
    Zholnin, A. G.
    Grigiriev, E. G.
    Klyatskina, E. A.
    5TH INTERNATIONAL SCIENTIFIC WORKSHOP ON ADVANCED TECHNOLOGIES OF MATERIALS FIELD-ASSISTED CONSOLIDATION, 2017, 218
  • [43] Mechanical properties of Al2O3\Ti composites fabricated by spark plasma sintering
    Meir, S.
    Kalabukhov, S.
    Frage, N.
    Hayun, S.
    CERAMICS INTERNATIONAL, 2015, 41 (03) : 4637 - 4643
  • [44] Mechanism and Properties of Ti/Al2O3 Composites by Spark Plasma Sintering Technique
    Wang Zhi
    Shi Guopu
    Zhao Jun
    Xing Guohong
    RARE METAL MATERIALS AND ENGINEERING, 2009, 38 : 450 - 453
  • [45] Microstructure and Mechanical Properties of Nanocrystalline FeCr Alloy Prepared by Spark Plasma Sintering
    Sebayang, D.
    Khaerudini, Deni S.
    Saryanto, H.
    Othman, M. A.
    Saleh, M. Husin
    Fredrick, D.
    Untoro, P.
    ADVANCES IN MECHANICAL ENGINEERING, PTS 1-3, 2011, 52-54 : 2197 - +
  • [46] Grain refining in spark plasma sintering Al2O3 ceramics
    Liu, Jinling
    Wang, Yiguang
    Yang, Fuqian
    Chen, Kepi
    An, Linan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 622 : 596 - 600
  • [47] Spark Plasma Sintering of Two Commercial Al2O3 Powders
    Liu, Zhenhua
    Ma, Qin
    Lu, Jinjun
    CHINESE CERAMICS COMMUNICATIONS II, 2012, 412 : 336 - +
  • [48] Spark-Plasma Sintering of Al2O3–Graphene Nanocomposite
    Zholnin A.G.
    Klyatskina E.A.
    Grigoryev E.G.
    Salvador M.D.
    Misochenko A.A.
    Dobrokhotov P.L.
    Isaenkova M.G.
    Sinaysky M.A.
    Stolyarov V.V.
    Inorganic Materials: Applied Research, 2018, 9 (03) : 498 - 503
  • [49] Fabrication of Ti/Al2O3 composites by spark plasma sintering
    Wang, Z
    Li, ML
    Shen, Q
    Zhang, LM
    COMPOSITE MATERIALS III, 2003, 249 : 137 - 140
  • [50] Densification of Al2O3 powder using spark plasma sintering
    S. W. Wang
    L. D. Chen
    T. Hirai
    Journal of Materials Research, 2000, 15 : 982 - 987