Bystander Detection: Automatic Labeling Techniques using Feature Selection and Machine Learning

被引:0
|
作者
Gupta, Anamika [1 ]
Thakkar, Khushboo [1 ]
Bhasin, Veenu [2 ]
Tiwari, Aman [1 ]
Mathur, Vibhor [1 ]
机构
[1] Univ Delhi, SS Coll Business Studies, Delhi, India
[2] Univ Delhi, PGDAV Coll, Delhi, India
关键词
Bystanders; cyberbullying; machine learning; de-; fender; instigator; impartial; toxicity; twitter;
D O I
10.14569/IJACSA.2024.01501112
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A hostile or aggressive behavior on an online platform by an individual or a group of people is termed as cyberbullying. A bystander is the one who sees or knows about such incidences of cyberbullying. A defender who intervenes can mitigate the impact of bullying, an instigator who accomplices the bully, can add to the victim's suffering, and an impartial onlooker who remains neutral and observes the scenario without getting engaged. Studying the behavior of Bystanders role can help in shaping the scale and progression of bullying incidents. However, the lack of data hinders the research in this area. Recently, a dataset, CYBY23, of Twitter threads having main tweets and the replies of Bystanders was published on Kaggle in Oct 2023. The dataset has extracted features related to toxicity and sensitivity of the main tweets and reply tweets. The authors have got manual annotators to assign the labels of Bystanders' roles. Manually labeling bystanders' roles is a labor-intensive task which eventually raises the need to have an automatic labeling technique for identifying the Bystander role. In this work, we aim to suggest a machine-learning model with high efficiency for the automatic labeling of Bystanders. Initially, the dataset was re-sampled using SMOTE to make it a balanced dataset. Next, we experimented with 12 models using various feature engineering techniques. Best features were selected for further experimentation by removing highly correlated and less relevant features. The models were evaluated on the metrics of accuracy, precision, recall, and F1 score. We found that the Random Forest Classifier (RFC) model with a certain set of features is the highest scorer among all 12 models. The RFC model was further tested against various splits of training and test sets. The highest results were achieved using a training set of 85% and a test set of 15%, having 78.83% accuracy, 81.79% precision, 74.83% recall, and 79.45% F1 score. Automatic labeling proposed in this work, will help in scaling the dataset which will be useful for further studies related to cyberbullying.
引用
收藏
页码:1135 / 1143
页数:9
相关论文
共 50 条
  • [21] A New Feature Selection Method Based on Dragonfly Algorithm for Android Malware Detection Using Machine Learning Techniques
    Guendouz, Mohamed
    Amine, Abdelmalek
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY AND PRIVACY, 2023, 17 (01)
  • [22] Performance Analysis of Anomaly-Based Network Intrusion Detection Using Feature Selection and Machine Learning Techniques
    Seniaray, Sumedha
    Jindal, Rajni
    WIRELESS PERSONAL COMMUNICATIONS, 2024, 138 (04) : 2321 - 2351
  • [23] Effective Feature Selection for Hybrid Wireless IoT Network Intrusion Detection Systems Using Machine Learning Techniques
    Nivaashini, M.
    Thangaraj, P.
    Sountharrajan, S.
    Suganya, E.
    Soundariya, R.
    AD HOC & SENSOR WIRELESS NETWORKS, 2021, 49 (3-4) : 175 - 206
  • [24] PermDroid a framework developed using proposed feature selection approach and machine learning techniques for Android malware detection
    Mahindru, Arvind
    Arora, Himani
    Kumar, Abhinav
    Gupta, Sachin Kumar
    Mahajan, Shubham
    Kadry, Seifedine
    Kim, Jungeun
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [25] Optimizing IoT Intrusion Detection Using Balanced Class Distribution, Feature Selection, and Ensemble Machine Learning Techniques
    Musthafa, Muhammad Bisri
    Huda, Samsul
    Kodera, Yuta
    Ali, Md. Arshad
    Araki, Shunsuke
    Mwaura, Jedidah
    Nogami, Yasuyuki
    SENSORS, 2024, 24 (13)
  • [26] Automatic Sarcasm Detection using feature selection
    Dharwal, Paras
    Choudhury, Tanupriya
    Mittal, Rajat
    Kumar, Praveen
    PROCEEDINGS OF THE 2017 3RD INTERNATIONAL CONFERENCE ON APPLIED AND THEORETICAL COMPUTING AND COMMUNICATION TECHNOLOGY (ICATCCT), 2017, : 29 - 34
  • [27] Feature Selection using an SVM learning machine
    El Ferchichi, Sabra
    Laabedi, Kaouther
    Zidi, Salah
    Maouche, Salah
    2009 3RD INTERNATIONAL CONFERENCE ON SIGNALS, CIRCUITS AND SYSTEMS (SCS 2009), 2009, : 485 - +
  • [28] INTRUSION DETECTION BASED ON MACHINE LEARNING AND FEATURE SELECTION
    Alaoui, Souad
    El Gonnouni, Amina
    Lyhyaoui, Abdelouahid
    MENDEL 2011 - 17TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING, 2011, : 199 - 206
  • [29] FEATURE SELECTION AND MACHINE LEARNING CLASSIFICATION FOR MALWARE DETECTION
    Khammas, Ban Mohammed
    Monemi, Alireza
    Bassi, Joseph Stephen
    Ismail, Ismahani
    Nor, Sulaiman Mohd
    Marsono, Muhammad Nadzir
    JURNAL TEKNOLOGI, 2015, 77 (01):
  • [30] Optimizing intrusion detection using intelligent feature selection with machine learning model
    Aljehane, Nojood O.
    Mengash, Hanan A.
    Hassine, Siwar B. H.
    Alotaibi, Faiz A.
    Salama, Ahmed S.
    Abdelbagi, Sitelbanat
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 91 : 39 - 49