Understanding cavitation bubble collapse and rebound near a solid wall

被引:18
|
作者
Nguyen, Van-Tu [1 ]
Sagar, Hemant J. [2 ]
el Moctar, Ould [2 ]
Park, Warn-Gyu [1 ]
机构
[1] Pusan Natl Univ, Sch Mech Engn, Busan 46241, South Korea
[2] Univ Duisburg Essen, Inst Ship Technol Ocean Engn & Transport Syst, Bismarckstr 69, D-47057 Duisburg, Germany
基金
新加坡国家研究基金会;
关键词
Cavitation bubbles; Laser-generated bubble; Wall effects; Thermodynamics; Microjets; Pressure impact; LASER-INDUCED CAVITATION; WASTE-WATER TREATMENT; HYDRODYNAMIC CAVITATION; ACOUSTIC CAVITATION; DYNAMICS; FLOW; ULTRASOUND; MECHANISMS; SIMULATION; GENERATION;
D O I
10.1016/j.ijmecsci.2024.109473
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The collapse of cavitation bubbles is known for its intense and aggressive behavior, producing concentrated bursts of energy that can cause erosion, noise, and damage to metallic surfaces and mechanical equipment. However, this concentrated energy also offers significant potential for various applications in biomedical science, industrial engineering, and related technologies. This study presents a comprehensive numerical investigation of the collapse and rebound of cavitation bubbles near a wall using a conservative, compressible multiphase flow model. Laser-generated cavitation bubbles growing, collapsing, and rebounding in distilled water near a wall at three standoff distances were experimentally studied to validate the numerical method. The results show good agreement between the bubble shapes and radii from the numerical simulations and experiments. Additionally, velocity of microjets and thermodynamics of the bubble collapse were validated against the reference data in the literature. Subsequently, the pressure and temperature distributions and jet shapes were examined in detail, exploring the impact of standoff distances ranging from 0.2 to 1.8. A quantitative analysis of the pressure and temperature produced on the wall, as well as the jet velocity and bubble movement during the collapse, was systematically conducted. Jet velocities observed ranged from 30 m/s to 130 m/s, and numerical simulations were compared with experimental data from the literature, showing good agreement. Maximum temperature and pressure induced at the wall center can reach up to 616.2 K and 139.5 MPa, respectively. The detailed analyses in this study provide significant insights into the behavior of cavitation bubbles and the effect of standoff distance on their collapse and rebound near a wall.
引用
收藏
页数:29
相关论文
共 50 条
  • [41] Research on the collapse characteristics of single cavitation bubble near solid particle by the VOF method
    Lyu, Fengxia
    Zhang, Xintong
    Yuan, Huixin
    Han, Saiyue
    Tang, Ming
    HELIYON, 2023, 9 (11)
  • [42] COLLAPSE OF A BUBBLE ATTACHED TO A SOLID WALL
    SHIMA, A
    SATO, Y
    INGENIEUR ARCHIV, 1979, 48 (02): : 85 - 95
  • [43] Morphological Analysis of a Collapsing Cavitation Bubble near a Solid Wall with Complex Geometry
    Shan, Minglei
    Shu, Fangyong
    Yang, Yu
    Shang, Yu
    Yin, Cheng
    Han, Qingbang
    APPLIED SCIENCES-BASEL, 2023, 13 (03):
  • [44] Collapse characteristics of the cavitation bubble near free surface
    Zhang Y.
    Xu W.
    Zhang Q.
    Zhai Y.
    Xu, Weilin (xuwl@scu.edu.cn), 1600, International Research and Training Center on Erosion and Sedimentation and China Water and Power Press (48): : 127 - 134
  • [45] Role of wall temperature on cavitation bubble collapse near a wall investigated using thermal lattice Boltzmann method
    Yang, Yu
    Shan, Minglei
    Su, Nana
    Kan, Xuefen
    Shangguan, Yanqin
    Han, Qingbang
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2022, 134
  • [46] Fluid/Material Coupled Numerical Simulation of a Bubble Collapse Near a Wall for Laser Cavitation Peening
    Iga, Yuka
    Kuji, Chieko
    Sasaki, Hirotoshi
    Soyama, Hitoshi
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON ADVANCED SURFACE ENHANCEMENT, INCASE 2023, 2024, : 309 - 314
  • [47] COLLAPSE OF A CAVITATION BUBBLE BETWEEN 2 SOLID WALLS
    KUVSHINOV, GI
    PROKHORENKO, PP
    DEZHKUNOV, NV
    KUVSHINOV, VI
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1982, 25 (03) : 381 - 387
  • [48] Jet Impact Stage of Bubble Collapse Near a Local Depression on a Solid Wall
    T. S. Guseva
    Lobachevskii Journal of Mathematics, 2023, 44 : 1671 - 1678
  • [49] Numerical simulation of micro bubble collapse near solid wall in fluent environment
    Mechanical Engineering School, University of Science and Technology Beijing, Beijing 100083, China
    不详
    Mocaxue Xuebao, 2008, 4 (311-315):
  • [50] Jet Impact During Bubble Collapse Near a Local Bump on a Solid Wall
    Guseva, T. S.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (05) : 2015 - 2025