In this paper, we propose an Echinococcosis model with logistic growth. After giving the basic reproductive number R-0, we prove that R-0 can be used to govern the threshold dynamics of the model: if R-0 < 1, the disease will go to extinction, while if R-0 > 1, the disease will persist. Based on the data of Echinococcosis in & Uuml;r & uuml;mqi, Xinjiang, China during 2006-2016, we estimate the parameters in the model and calculate that R-0 = 1.42 (95% CI [0.767, 4.327]). The results show that Echinococcosis is endemic in & Uuml;r & uuml;mqi, China. In addition, we obtain that MAPE = 3.54% and RMSPE = 3.87%, which indicates that the model has certain reliability and rationality. Furthermore, we carry out the sensitivity analysis of the model parameters to identify the key factors affecting the prevalence of Echinococcosis, and the effective control efforts are suggested focusing on reducing the proportion rate from sheep to dogs and increasing the recovery rate of dogs to curb the prevalence of Echinococcosis in & Uuml;r & uuml;mqi, China.