Positive Solutions for the Fractional p-Laplacian via Mixed Topological and Variational Methods

被引:0
|
作者
Iannizzotto, Antonio [1 ]
机构
[1] Univ Cagliari, Dipartimento Matemat & Informat, Cagliari, Italy
来源
NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, PICNDEA 2022 | 2024年 / 7卷
关键词
D O I
10.1007/978-3-031-53740-0_8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a nonlinear, nonlocal Dirichlet problem driven by the degenerate fractional p-Laplacian via a combination of topological methods (degree theory for operators of monotone type) and variational methods (critical point theory). We assume local conditions ensuring the existence of sub- and supersolutions. So we prove existence of two positive solutions, in both the coercive and noncoercive cases.
引用
收藏
页码:123 / 151
页数:29
相关论文
共 50 条
  • [31] On parabolic problems involving fractional p-Laplacian via topological degree
    Talibi, Ihya
    Taqbibt, Abdellah
    El Boukari, Brahim
    El Ghordaf, Jalila
    El Omari, M'hamed
    FILOMAT, 2024, 38 (20) : 7173 - 7181
  • [32] Radial symmetry for positive solutions of fractional p-Laplacian equations via constrained minimization method
    Xie, Liuliu
    Huang, Xiaotao
    Wang, Lihe
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 337 : 54 - 62
  • [33] The sliding methods for the fractional p-Laplacian
    Wu, Leyun
    Chen, Wenxiong
    ADVANCES IN MATHEMATICS, 2020, 361
  • [34] Positive Solutions of Singular Fractional Boundary Value Problem with p-Laplacian
    Ji, Dehong
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (01) : 249 - 263
  • [35] Nonexistence and Uniqueness of Positive Solutions to a Nonlinear Fractional p-Laplacian System
    Kong Xiangshan
    Li Haitao
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 262 - 266
  • [36] Positive solutions for eigenvalue problems of fractional differential equations with p-Laplacian
    Lu, H.
    Han, Z.
    Sun, S.
    Zhang, C.
    SCIENTIA IRANICA, 2015, 22 (03) : 755 - 764
  • [37] NONEXISTENCE OF POSITIVE SOLUTIONS FOR A SYSTEMS OF COUPLED FRACTIONAL BVPS WITH p-LAPLACIAN
    Rao, S. N.
    Meetei, M. Z.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (03): : 597 - 608
  • [38] Positive solutions for a fractional boundary value problem with p-Laplacian operator
    Ding Y.
    Wei Z.
    Xu J.
    Journal of Applied Mathematics and Computing, 2013, 41 (1-2) : 257 - 268
  • [39] Positive solutions to boundary value problems of p-Laplacian with fractional derivative
    Dong, Xiaoyu
    Bai, Zhanbing
    Zhang, Shuqin
    BOUNDARY VALUE PROBLEMS, 2017,
  • [40] Positive Solutions of Singular Fractional Boundary Value Problem with p-Laplacian
    Dehong Ji
    Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 : 249 - 263