Attention Prompt-Driven Source-Free Adaptation for Remote Sensing Images Semantic Segmentation

被引:0
|
作者
Gao, Kuiliang [1 ]
You, Xiong [1 ]
Li, Ke [1 ]
Chen, Lingyu [1 ]
Lei, Juan [1 ]
Zuo, Xibing [1 ]
机构
[1] PLA Informat Engn Univ, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
Foundation models; prompt learning; remote sensing images (RSIs); semantic segmentation; source-free adaptation;
D O I
10.1109/LGRS.2024.3422805
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Recently, remote sensing images (RSIs) domain adaptation segmentation has been extensively studied. However, existing methods generally assume that source RSIs must be available, which is obviously an overly demanding condition and will increase unnecessary costs in practice. To this end, this letter takes the lead in exploring RSIs source-free adaptation segmentation, where only the offline model pretrained on the source domain and target RSIs are available. A novel method featuring prompt learning and vision foundation models is proposed, and the novelty design includes two aspects. First, to better adapt the general-purpose knowledge in the foundation model to different target RSIs, an attention-guided prompt tuning strategy is proposed, which can dynamically steer the knowledge at different layers and positions through prompts with different weights. Second, a feature alignment strategy with similarity distance is proposed for source-free domain adaptation by taking full advantage of the representation ability of the foundation model and the flexibility of prompt learning. Extensive experiments indicate that the performance of the proposed method is significantly superior to that of existing methods. Specifically, the mIoU of target RSIs has been improved by at least 3.14%similar to 4.18%.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Frequency-Driven Edge Guidance Network for Semantic Segmentation of Remote Sensing Images
    Li, Jinsong
    Zhang, Shujun
    Sun, Yukang
    Han, Qi
    Sun, Yuanyuan
    Wang, Yimin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 9677 - 9693
  • [42] Unsupervised Domain Adaptation for Semantic Segmentation of High-Resolution Remote Sensing Imagery Driven by Category-Certainty Attention
    Chen, Jie
    Zhu, Jingru
    Guo, Ya
    Sun, Geng
    Zhang, Yi
    Deng, Min
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [43] Uncertainty-Aware Source-Free Domain Adaptive Semantic Segmentation
    Lu, Zhihe
    Li, Da
    Song, Yi-Zhe
    Xiang, Tao
    Hospedales, Timothy M. M.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 4664 - 4676
  • [44] Novel Convolutions for Semantic Segmentation of Remote Sensing Images
    Xiao, Ruijie
    Zhong, Chuan
    Zeng, Wankang
    Cheng, Ming
    Wang, Cheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [45] Rethinking Transformers for Semantic Segmentation of Remote Sensing Images
    Liu, Yuheng
    Zhang, Yifan
    Wang, Ye
    Mei, Shaohui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [46] Semantic Segmentation of Images Obtained by Remote Sensing of the Earth
    Igonin, Dmitry M.
    Tiumentsev, Yury V.
    ADVANCES IN NEURAL COMPUTATION, MACHINE LEARNING, AND COGNITIVE RESEARCH III, 2020, 856 : 309 - 318
  • [47] Semantic Segmentation of Remote Sensing Images With Sparse Annotations
    Hua, Yuansheng
    Marcos, Diego
    Mou, Lichao
    Zhu, Xiao Xiang
    Tuia, Devis
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [48] A NEW SEMANTIC SEGMENTATION MODEL FOR REMOTE SENSING IMAGES
    Wei, Xin
    Guo, Yajing
    Gao, Xin
    Yan, Menglong
    Sun, Xian
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 1776 - 1779
  • [49] LPASS-Net: Lightweight Progressive Attention Semantic Segmentation Network for Automatic Segmentation of Remote Sensing Images
    Liang, Han
    Seo, Suyoung
    REMOTE SENSING, 2022, 14 (23)
  • [50] Multi-Attention-Based Semantic Segmentation Network for Land Cover Remote Sensing Images
    Jia, Jintong
    Song, Jiarui
    Kong, Qingqiang
    Yang, Huan
    Teng, Yunhe
    Song, Xuan
    ELECTRONICS, 2023, 12 (06)