Exploring the Molecular Mechanisms of Huaier on Modulating Metabolic Reprogramming of Hepatocellular Carcinoma: A Study Based on Network Pharmacology, Molecular Docking and Bioinformatics

被引:0
|
作者
Wan, Yuxiang [1 ]
Jiang, Honglin [1 ]
Liu, Zeyu [2 ]
Bai, Chen [3 ]
Lian, Yanyan [1 ]
Zhang, Chunguang [1 ]
Zhang, Qiaoli [1 ]
Huang, Jinchang [1 ]
机构
[1] Beijing Univ Chinese Med, Affiliated Hosp 3, Dept Acupuncture & Mini invas Oncol, Beijing 100029, Peoples R China
[2] Sun Yat Sen Univ Canc Ctr, Dept VIP Reg, Guangzhou 510060, Peoples R China
[3] Beijing Univ Chinese Med, Sch Tradit Chinese Med, Beijing 100029, Peoples R China
关键词
Huaier; Hepatocellular carcinoma; AKRIC3; network pharmacology; metabolic reprogramming; KETO REDUCTASE SUPERFAMILY; TRANS-RETINOIC ACID; THERAPEUTIC TARGET; ACCURATE DOCKING; IN-VITRO; CANCER; EXPRESSION; PROTEIN; CELLS; METASTASIS;
D O I
10.2174/0113816128287535240429043610
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Background Huaier (Trametes robiniophila Murr), a traditional Chinese medicine, is widely used in China as a complementary and alternative therapy to treat hepatocellular carcinoma (HCC). Past studies have shown that Huaier can arrest the cell cycle, promote apoptosis and inhibit the proliferation of cancer cells. However, how it regulates the metabolism of HCC is still unclear.Objective This study explores the metabolic-related function of Huaier in treating HCC with an in-silico approach.Methods A network pharmacology and bioinformatics-based approach was employed to investigate the molecular pathogenesis of metabolic reprogramming in HCC with Huaier. The compounds of Huaier were obtained from public databases. Oral bioavailability and drug likeness were screened using the TCMSP platform. The differential gene expressions between HCC and non-tumor tissue were calculated and used to find the overlap from the targets of Huaier. The enrichment analysis of the overlapped targets by Metascape helped filter out the metabolism-related targets of Huaier in treating HCC. Protein-protein interaction (PPI) network construction and topological screening revealed the hub nodes. The prognosis and clinical correlation of these targets were validated from the cancer genome atlas (TCGA) database, and the interactions between the hub nodes and active ingredients were validated by molecular docking.Results The results showed that Peroxyergosterol, Daucosterol, and Kaempferol were the primary active compounds of Huaier involved in the metabolic reprogramming of HCC. The top 6 metabolic targets included AKR1C3, CYP1A1, CYP3A4, CYP1A2, CYP17A1, and HSD11B1. The decreased expression of CYP3A4 and increased expression of AKR1C3 were related to the poor overall survival of HCC patients. The molecular docking validated that Peroxyergosterol and Kaempferol exhibited the potential to modulate CYP3A4 and AKR1C3 from a computational perspective.Conclusion This study provided a workflow for understanding the mechanism of Huaier in regulating the metabolic reprogramming of HCC.
引用
收藏
页码:1894 / 1911
页数:18
相关论文
共 50 条
  • [41] Ampelopsin Inhibits Breast Cancer Glucose Metabolism Reprogramming Based on Network Pharmacology and Molecular Docking
    Zeng, Rong
    Liu, Lin
    Zhao, Jingshan
    Zhang, Wenmei
    Zhang, Guohong
    Li, Yunfeng
    ONCOLOGIE, 2022, 24 (03) : 483 - 498
  • [42] Exploring the mechanisms of action of Cordyceps sinensis for the treatment of depression using network pharmacology and molecular docking
    Zhang, Xingfang
    Wang, Mengyuan
    Qiao, Yajun
    Shan, Zhongshu
    Yang, Mengmeng
    Li, Guoqiang
    Xiao, Yuancan
    Wei, Lixin
    Bi, Hongtao
    Gao, Tingting
    ANNALS OF TRANSLATIONAL MEDICINE, 2022, 10 (06)
  • [43] The mechanism of lingze tablet in treating prostatitis and insomnia: Based on network pharmacology, bioinformatics and molecular docking
    Luo, Yingxun
    Zhang, Yuanfeng
    Lan, Kaijian
    Zhang, Yonghai
    ASIAN JOURNAL OF SURGERY, 2024, 47 (07) : 3185 - 3187
  • [44] Interpreting the Molecular Mechanisms of Yinchenhao Decoction on Hepatocellular Carcinoma through Absorbed Components Based on Network Pharmacology
    Sun, Jijia
    Han, Tao
    Yang, Tao
    Chen, Yunhui
    Huang, Jihan
    BIOMED RESEARCH INTERNATIONAL, 2021, 2021
  • [45] Exploring the molecular mechanism of Epimedium for the treatment of ankylosing spondylitis based on network pharmacology, molecular docking, and molecular dynamics simulations
    Wang, Xiangjin
    Wu, Lijiao
    Yu, Maobin
    Wang, Hao
    He, Langyu
    Hu, Yilang
    Li, Zhaosen
    Zheng, Yuqin
    Peng, Bo
    MOLECULAR DIVERSITY, 2025, 29 (01) : 591 - 606
  • [46] Potential molecular mechanisms of Ermiao san in the treatment of hyperuricemia and gout based on network pharmacology with molecular docking
    Geng, Yin-Hong
    Yan, Jia-Hui
    Han, Liang
    Chen, Zhe
    Tu, Sheng-Hao
    Zhang, Lin-Qi
    Song, Chun-Dong
    Duan, Feng-Yang
    Liu, Ya-Fei
    MEDICINE, 2022, 101 (37) : E30525
  • [47] Potential Molecular Mechanisms of Ephedra Herb in the Treatment of Nephrotic Syndrome Based on Network Pharmacology and Molecular Docking
    Yao, Tianwen
    Wang, Qingliang
    Han, Shisheng
    Lu, Yan
    Xu, Yanqiu
    Wang, Yi
    BIOMED RESEARCH INTERNATIONAL, 2022, 2022
  • [48] Exploring the potential mechanism of Radix Bupleuri in the treatment of sepsis: a study based on network pharmacology and molecular docking
    Wang, Hao
    Xiong, Wei
    Laram, Yongchu
    Hu, Li
    Zhong, Wu
    Hu, Yingchun
    BMC COMPLEMENTARY MEDICINE AND THERAPIES, 2024, 24 (01)
  • [49] Active ingredients and molecular targets of Taraxacum mongolicum against hepatocellular carcinoma: network pharmacology, molecular docking, and molecular dynamics simulation analysis
    Zheng, Yanfeng
    Ji, Shaoxiu
    Li, Xia
    Feng, Quansheng
    PEERJ, 2022, 10
  • [50] Exploring the Mechanism of Hepatotoxicity Induced by Dictamnus dasycarpus Based on Network Pharmacology, Molecular Docking and Experimental Pharmacology
    Gao, Peng
    Chang, Kun
    Yuan, Shuo
    Wang, Yanhang
    Zeng, Kewu
    Jiang, Yong
    Tu, Pengfei
    Lu, Yingyuan
    Guo, Xiaoyu
    MOLECULES, 2023, 28 (13):