Polariton lasing in Mie-resonant perovskite nanocavity

被引:3
|
作者
Masharin, Mikhail A. [1 ,2 ]
Khmelevskaia, Daria [2 ]
Kondratiev, Valeriy I. [2 ]
Markina, Daria I. [2 ]
Utyushev, Anton D. [2 ]
Dolgintsev, Dmitriy M. [2 ]
Dmitriev, Alexey D. [2 ]
Shahnazaryan, Vanik A. [2 ,3 ]
Pushkarev, Anatoly P. [2 ]
Isik, Furkan [1 ,4 ]
Iorsh, Ivan V. [2 ,5 ]
Shelykh, Ivan A. [3 ,6 ]
Demir, Hilmi V. [1 ,4 ]
Samusev, Anton K. [2 ,7 ]
Makarov, Sergey V. [2 ,8 ]
机构
[1] Bilkent Univ, UNAM Inst Mat Sci & Nanotechnol, Natl Nanotechnol Res Ctr, Dept Elect & Elect Engn,Dept Phys, TR-06800 Ankara, Turkiye
[2] ITMO Univ, Sch Phys & Engn, St Petersburg 197101, Russia
[3] MIPT, Abrikosov Ctr Theoret Phys, Dolgoprudnyi 141701, Moscow Region, Russia
[4] Nanyang Technol Univ, LUMINOUS Ctr Excellence Semicond Lighting & Displ, Sch Elect & Elect Engn, Sch Phys & Math Sci,Sch Mat Sci & Engn, Singapore 639798, Singapore
[5] Queens Univ, Dept Phys Engn Phys & Astron, Kingston, ON K7L 3N6, Canada
[6] Univ Iceland, Sci Inst, Dunhagi 3, IS-107 Reykjavik, Iceland
[7] Tech Univ Dortmund, Expt Phys 2, D-44227 Dortmund, Germany
[8] Harbin Engn Univ, Qingdao Innovat & Dev Ctr, Qingdao 266000, Peoples R China
关键词
nanolaser; perovskite; polariton; Mie resonance; exciton-polariton; NANOWIRE LASERS; OPTICAL GAIN; SEMICONDUCTOR; EMISSION; DYNAMICS; STATE; PHOTOLUMINESCENCE; NANOLASERS; EXCITONS;
D O I
10.29026/oea.2024.230148
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Deeply subwavelength lasers (or nanolasers) are highly demanded for compact on -chip bioimaging and sensing at the nanoscale. One of the main obstacles for the development of single -particle nanolasers with all three dimensions shorter than the emitting wavelength in the visible range is the high lasing thresholds and the resulting overheating. Here we exploit exciton-polariton condensation and mirror -image Mie modes in a cuboid CsPbBr 3 nanoparticle to achieve coherent emission at the visible wavelength of around 0.53 mu m from its ultra -small ( approximate to 0.007 mu m 3 or approximate to lambda 3 / 2 0) semiconductor nanocavity. The polaritonic nature of the emission from the nanocavity localized in all three dimensions is proven by direct comparison with corresponding one-dimensional and two-dimensional waveguiding systems with similar material parameters. Such a deeply subwavelength nanolaser is enabled not only by the high values for exciton binding energy ( approximate to 35 meV), refractive index (>2.5 at low temperature), and luminescence quantum yield of CsPbBr 3 , but also by the optimization of polaritons condensation on the Mie resonances with quality factors improved by the metallic substrate. Moreover, the key parameters for optimal lasing conditions are intermode free spectral range and phonons spectrum in CsPbBr 3 , which govern polaritons condensation path. Such chemically synthesized colloidal CsPbBr 3 nanolasers can be potentially deposited on arbitrary surfaces, which makes them a versatile tool for integration with various on -chip systems.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Selective Third-Harmonic Generation by Structured Light in Mie-Resonant Nanoparticles
    Meik-Gaykazyan, Elizaveta V.
    Kruk, Sergey S.
    Camacho-Morales, Rocio
    Xu, Lei
    Rahmani, Mohsen
    Kamali, Khosro Zangeneh
    Lamprianidis, Aristeidis
    Miroshnichenko, Andrey E.
    Fedyanin, Andrey A.
    Neshev, Dragomir N.
    Kivshar, Yuri S.
    ACS PHOTONICS, 2018, 5 (03): : 728 - 733
  • [42] High-Q Dielectric Mie-resonant Nanostructures (Mini-review)
    Tonkaev, P.
    Kivshar, Y.
    JETP LETTERS, 2020, 112 (10) : 615 - 622
  • [43] Directional and Spectral Shaping of Light Emission with Mie-Resonant Silicon Nanoantenna Arrays
    Vaskin, Aleksandr
    Bohn, Justus
    Chong, Katie E.
    Bucher, Tobias
    Zilk, Matthias
    Choi, Duk-Yong
    Neshev, Dragomir N.
    Kivshar, Yuri S.
    Pertsch, Thomas
    Staude, Isabelle
    ACS PHOTONICS, 2018, 5 (04): : 1359 - 1364
  • [44] Multipole Born series approach to light scattering by Mie-resonant nanoparticle structures
    Ustimenko, Nikita A.
    Kornovan, Danil F.
    Baryshnikova, Kseniia, V
    Evlyukhin, Andrey B.
    Petrov, Mihail, I
    JOURNAL OF OPTICS, 2022, 24 (03)
  • [45] Tailoring Photoluminescence from MoS2 Monolayers by Mie-Resonant Metasurfaces
    Bucher, Tobias
    Vaskin, Aleksandr
    Mupparapu, Rajeshkumar
    Loechner, Franz J. F.
    George, Antony
    Chong, Katie E.
    Fasold, Stefan
    Neumann, Christof
    Choi, Duk-Yong
    Eilenberger, Falk
    Setzpfandt, Frank
    Kivshar, Yuri S.
    Pertsch, Thomas
    Turchanin, Andrey
    Staude, Isabelle
    ACS PHOTONICS, 2019, 6 (04): : 1002 - 1009
  • [46] Mie-Resonant Nanophotonic-Enhancement of Asymmetry in Sodium Chlorate Chiral Crystallization
    Niinomi, Hiromasa
    Gotoh, Kazuhiro
    Takano, Naoki
    Tagawa, Miho
    Morita, Iori
    Onuma, Akiko
    Yoshikawa, Hiroshi Y.
    Kawamura, Ryuzo
    Oshikiri, Tomoya
    Nakagawa, Masaru
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (06): : 1564 - 1571
  • [47] Structured Light for Second-Harmonic Spectroscopy in Mie-Resonant AlGaAs Nanoparticles
    Melik-Gaykazyan, Elizaveta
    Koshelev, Kirill
    Choi, Jae-Hyuck
    Kruk, Sergey
    Park, Hong-Gyu
    Fedyanin, Andrey
    Kivshar, Yuri
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2019,
  • [48] Functional photonic nanostructures based on Mie-resonant semiconductor nanoparticles (Conference Presentation)
    Staude, Isabelle
    QUANTUM SENSING AND NANO ELECTRONICS AND PHOTONICS XIV, 2017, 10111
  • [49] Second-Harmonic Generation by Mie-resonant Nanoparticles with Bulk Quadratic Nonlinearity
    Smirnova, Daria A.
    Volkovskaya, Irina I.
    Smirnov, Alexander I.
    2018 20TH ANNIVERSARY INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON), 2018,
  • [50] Mie-Resonant Silicon Nanoparticles for Physically Unclonable Anti- Counterfeiting Labels
    Kustov, Pavel
    Petrova, Elena
    Nazarov, Mikhail
    Gilmullin, Almaz
    Sandomirskii, Martin
    Ponkratova, Ekaterina
    Yaroshenko, Vitaly
    Ageev, Eduard
    Zuev, Dmitry
    ACS APPLIED NANO MATERIALS, 2022, 5 (08) : 10548 - 10559