Polariton lasing in Mie-resonant perovskite nanocavity

被引:3
|
作者
Masharin, Mikhail A. [1 ,2 ]
Khmelevskaia, Daria [2 ]
Kondratiev, Valeriy I. [2 ]
Markina, Daria I. [2 ]
Utyushev, Anton D. [2 ]
Dolgintsev, Dmitriy M. [2 ]
Dmitriev, Alexey D. [2 ]
Shahnazaryan, Vanik A. [2 ,3 ]
Pushkarev, Anatoly P. [2 ]
Isik, Furkan [1 ,4 ]
Iorsh, Ivan V. [2 ,5 ]
Shelykh, Ivan A. [3 ,6 ]
Demir, Hilmi V. [1 ,4 ]
Samusev, Anton K. [2 ,7 ]
Makarov, Sergey V. [2 ,8 ]
机构
[1] Bilkent Univ, UNAM Inst Mat Sci & Nanotechnol, Natl Nanotechnol Res Ctr, Dept Elect & Elect Engn,Dept Phys, TR-06800 Ankara, Turkiye
[2] ITMO Univ, Sch Phys & Engn, St Petersburg 197101, Russia
[3] MIPT, Abrikosov Ctr Theoret Phys, Dolgoprudnyi 141701, Moscow Region, Russia
[4] Nanyang Technol Univ, LUMINOUS Ctr Excellence Semicond Lighting & Displ, Sch Elect & Elect Engn, Sch Phys & Math Sci,Sch Mat Sci & Engn, Singapore 639798, Singapore
[5] Queens Univ, Dept Phys Engn Phys & Astron, Kingston, ON K7L 3N6, Canada
[6] Univ Iceland, Sci Inst, Dunhagi 3, IS-107 Reykjavik, Iceland
[7] Tech Univ Dortmund, Expt Phys 2, D-44227 Dortmund, Germany
[8] Harbin Engn Univ, Qingdao Innovat & Dev Ctr, Qingdao 266000, Peoples R China
关键词
nanolaser; perovskite; polariton; Mie resonance; exciton-polariton; NANOWIRE LASERS; OPTICAL GAIN; SEMICONDUCTOR; EMISSION; DYNAMICS; STATE; PHOTOLUMINESCENCE; NANOLASERS; EXCITONS;
D O I
10.29026/oea.2024.230148
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Deeply subwavelength lasers (or nanolasers) are highly demanded for compact on -chip bioimaging and sensing at the nanoscale. One of the main obstacles for the development of single -particle nanolasers with all three dimensions shorter than the emitting wavelength in the visible range is the high lasing thresholds and the resulting overheating. Here we exploit exciton-polariton condensation and mirror -image Mie modes in a cuboid CsPbBr 3 nanoparticle to achieve coherent emission at the visible wavelength of around 0.53 mu m from its ultra -small ( approximate to 0.007 mu m 3 or approximate to lambda 3 / 2 0) semiconductor nanocavity. The polaritonic nature of the emission from the nanocavity localized in all three dimensions is proven by direct comparison with corresponding one-dimensional and two-dimensional waveguiding systems with similar material parameters. Such a deeply subwavelength nanolaser is enabled not only by the high values for exciton binding energy ( approximate to 35 meV), refractive index (>2.5 at low temperature), and luminescence quantum yield of CsPbBr 3 , but also by the optimization of polaritons condensation on the Mie resonances with quality factors improved by the metallic substrate. Moreover, the key parameters for optimal lasing conditions are intermode free spectral range and phonons spectrum in CsPbBr 3 , which govern polaritons condensation path. Such chemically synthesized colloidal CsPbBr 3 nanolasers can be potentially deposited on arbitrary surfaces, which makes them a versatile tool for integration with various on -chip systems.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Polariton lasing in Mie-resonant perovskite nanocavity
    Mikhail AMasharin
    Daria Khmelevskaia
    Valeriy IKondratiev
    Daria IMarkina
    Anton DUtyushev
    Dmitriy MDolgintsev
    Alexey DDmitriev
    Vanik AShahnazaryan
    Anatoly PPushkarev
    Furkan Isik
    Ivan VIorsh
    Ivan AShelykh
    Hilmi VDemir
    Anton KSamusev
    Sergey VMakarov
    Opto-Electronic Advances, 2024, 7 (04) : 29 - 45
  • [2] Photovoltaic Response of Mie-Resonant Perovskite Nanoparticles
    A. S. Berestennikov
    F. E. Komissarenko
    I. S. Mukhin
    S. V. Makarov
    Bulletin of the Russian Academy of Sciences: Physics, 2024, 88 (Suppl 3) : S390 - S393
  • [3] Room-Temperature Lasing from Mie-Resonant Nonplasmonic Nanoparticles
    Tiguntseva, Ekaterina
    Koshelev, Kirill
    Furasova, Aleksandra
    Tonkaev, Pavel
    Mikhailovskii, Vladimir
    Ushakova, Elena V.
    Baranov, Denis G.
    Shegai, Timur
    Zakhidov, Anvar A.
    Kivshar, Yuri
    Makarov, Sergey V.
    ACS NANO, 2020, 14 (07) : 8149 - 8156
  • [4] Mie-resonant metaphotonics
    Babicheva, Viktoriia E.
    Evlyukhin, Andrey B.
    ADVANCES IN OPTICS AND PHOTONICS, 2024, 16 (03): : 539 - 658
  • [5] Mie-Resonant Nanoparticles for Light Absorption Improvement of Perovskite Photodetectors
    A. D. Furasova
    Bulletin of the Russian Academy of Sciences: Physics, 2024, 88 (Suppl 3) : S325 - S329
  • [6] Droplet Microfluidic Synthesis of Halide Perovskites Affords Upconversion Lasing in Mie-Resonant Cuboids
    Koryakina, Irina
    Bikmetova, Sabina
    Khmelevskaia, Daria
    Markina, Daria
    Kuleshova, Alina
    Logunov, Lev
    Timin, Alexander S.
    Pushkarev, Anatoly
    Makarov, Sergey
    Zyuzin, Mikhail V.
    ACS APPLIED NANO MATERIALS, 2023, 6 (06) : 4370 - 4378
  • [7] Recent advances in Mie-resonant metaphotonics
    Kivshar, Yuri S.
    2020 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP) AND INTERNATIONAL CONFERENCE ON INFORMATION PHOTONICS AND OPTICAL COMMUNICATIONS (IPOC), 2020,
  • [8] Dielectric Membrane Mie-Resonant Metasurfaces
    Yang, Quanlong
    Kruk, Sergey
    Srivastava, Yogesh Kumar
    Koshelev, Kirill
    Singh, Ranjan
    Han, Jiaguang
    Kivshar, Yuri
    Shadrivov, Ilya
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2019,
  • [9] Mie-Resonant Membrane Huygens' Metasurfaces
    Yang, Quanlong
    Kruk, Sergey
    Xu, Yuehong
    Wang, Qingwei
    Srivastava, Yogesh Kumar
    Koshelev, Kirill
    Kravchenko, Ivan
    Singh, Ranjan
    Han, Jiaguang
    Kivshar, Yuri
    Shadrivov, Ilya
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (04)
  • [10] Room-Temperature Lasing in Colloidal Nanoplatelets via Mie-Resonant Bound States in the Continuum
    Wu, Mengfei
    Ha, Son Tung
    Shendre, Sushant
    Durmusoglu, Emek G.
    Koh, Weon-Kyu
    Abujetas, Diego R.
    Sanchez-Gil, Jose A.
    Paniagua-Dominguez, Ramon
    Demir, Hilmi Volkan
    Kuznetsov, Arseniy, I
    NANO LETTERS, 2020, 20 (08) : 6005 - 6011