Learning Visual Words for Weakly-Supervised Semantic Segmentation

被引:0
|
作者
Ru, Lixiang [1 ,2 ]
Du, Bo [1 ,2 ]
Wu, Chen [3 ]
机构
[1] Wuhan Univ, Natl Engn Res Ctr Multimedia Software, Inst Artificial Intelligence, Sch Comp Sci, Wuhan, Peoples R China
[2] Wuhan Univ, Hubei Key Lab Multimedia & Network Commun Engn, Wuhan, Peoples R China
[3] Wuhan Univ, LIESMARS, Wuhan, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Current weakly-supervised semantic segmentation (WSSS) methods with image-level labels mainly adopt class activation maps (CAM) to generate the initial pseudo labels. However, CAM usually only identifies the most discriminative object extents, which is attributed to the fact that the network doesn't need to discover the integral object to recognize image-level labels. In this work, to tackle this problem, we proposed to simultaneously learn the image-level labels and local visual word labels. Specifically, in each forward propagation, the feature maps of the input image will be encoded to visual words with a learnable codebook. By enforcing the network to classify the encoded fine-grained visual words, the generated CAM could cover more semantic regions. Besides, we also proposed a hybrid spatial pyramid pooling module that could preserve local maximum and global average values of feature maps, so that more object details and less background were considered. Based on the proposed methods, we conducted experiments on the PASCAL VOC 2012 dataset. Our proposed method achieved 67.2% mIoU on the val set and 67.3% mIoU on the test set, which outperformed recent state-of-the-art methods.
引用
收藏
页码:982 / 988
页数:7
相关论文
共 50 条
  • [21] Discriminative region suppression for weakly-supervised semantic segmentation
    Korea Advanced Institute of Science and Technology , Korea, Republic of
    arXiv, 1600,
  • [22] Expansion and Shrinkage of Localization for Weakly-Supervised Semantic Segmentation
    Li, Jinlong
    Jie, Zequn
    Wang, Xu
    Wei, Xiaolin
    Ma, Lin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [23] Weakly-Supervised Semantic Segmentation Using Motion Cues
    Tokmakov, Pavel
    Alahari, Karteek
    Schmid, Cordelia
    COMPUTER VISION - ECCV 2016, PT IV, 2016, 9908 : 388 - 404
  • [24] HYPERGRAPH CONVOLUTIONAL NETWORKS FOR WEAKLY-SUPERVISED SEMANTIC SEGMENTATION
    Giraldo, Jhony H.
    Scarrica, Vincenzo
    Staiano, Antonino
    Camastra, Francesco
    Bouwmans, Thierry
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 16 - 20
  • [25] Weakly-Supervised Semantic Segmentation Network With Iterative dCRF
    Li, Yujie
    Sun, Jiaxing
    Li, Yun
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (12) : 25419 - 25426
  • [26] Modeling the Background for Incremental and Weakly-Supervised Semantic Segmentation
    Cermelli, Fabio
    Mancini, Massimiliano
    Bulo, Samuel Rota
    Ricci, Elisa
    Caputo, Barbara
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 10099 - 10113
  • [27] Weakly-Supervised Semantic Segmentation Based on Improved CAM
    Yan, Xingya
    Gao, Ying
    Wang, Gaihua
    Lecture Notes on Data Engineering and Communications Technologies, 2022, 89 : 584 - 594
  • [28] WeakCLIP: Adapting CLIP for Weakly-Supervised Semantic Segmentation
    Zhu, Lianghui
    Wang, Xinggang
    Feng, Jiapei
    Cheng, Tianheng
    Li, Yingyue
    Jiang, Bo
    Zhang, Dingwen
    Han, Junwei
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2025, 133 (03) : 1085 - 1105
  • [29] Learning from the Web: Language Drives Weakly-Supervised Incremental Learning for Semantic Segmentation
    Liu, Chang
    Rizzoli, Giulia
    Zanuttigh, Pietro
    Li, Fu
    Niu, Yi
    COMPUTER VISION - ECCV 2024, PT XVII, 2025, 15075 : 352 - 369
  • [30] Learning random-walk label propagation for weakly-supervised semantic segmentation
    Vernaza, Paul
    Chandraker, Manmohan
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 2953 - 2961