Ship Detection in Large-scale SAR Images Based on Dense Spatial Attention and Multi-level Feature Fusion

被引:5
|
作者
Zhang, Limin [1 ]
Liu, Yingjian [1 ]
Guo, Qingxiang [1 ]
Yin, Haoyu [1 ]
Li, Yue [1 ]
Du, Pengting [1 ]
机构
[1] Ocean Univ China, Dept Comp Sci & Technol, Qingdao, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
SAR image; ship detection; anchor-free; dense spatial attention; multi-level feature fusion;
D O I
10.1145/3472634.3472654
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, ship detection in large-scale synthetic aperture radar (SAR) images attracts more attentions and becomes a research hotspot. But it still faces some challenges, such as strong interference of background noise and very small ship targets. This paper proposes a novel anchor-free detector, small target detector (STDet), based on dense spatial attention (DSA) and multi-level feature fusion (MFF). DSA is applied first to the backbone (Resnet50) in order to filter out the background noise and obtain more advanced semantic features. Then, a MFF network is used after the backbone to improve the detection accuracy, especially for small targets, by fusing the location and semantic information of different level feature maps. Finally, the refined features are fed to detection head to get the final results. Experiments are conducted on the public dataset LS-SSDD-v1.0. Experimental results prove our STDet has good performance for ship detection in large-scale SAR images.
引用
收藏
页码:77 / 81
页数:5
相关论文
共 50 条
  • [21] A NOVEL SHIP DETECTION METHOD FOR LARGE-SCALE OPTICAL SATELLITE IMAGES BASED ON VISUAL LBP FEATURE AND VISUAL ATTENTION MODEL
    Sui Haigang
    Song Zhina
    XXIII ISPRS CONGRESS, COMMISSION III, 2016, 41 (B3): : 917 - 921
  • [22] BFEA: A SAR Ship Detection Model Based on Attention Mechanism and Multiscale Feature Fusion
    Zhou, Liming
    Wan, Ziye
    Zhao, Shuai
    Han, Hongyu
    Liu, Yang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 11163 - 11177
  • [23] DENSE DOCKED SHIP DETECTION VIA SPATIAL GROUP-WISE ENHANCE ATTENTION IN SAR IMAGES
    Wang, Xiaoya
    Cui, Zongyong
    Cao, Zongjie
    Dang, Sihang
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 1244 - 1247
  • [24] MLANet: multi-level attention network with multi-scale feature fusion for crowd counting
    Xiong, Liyan
    Zeng, Yijuan
    Huang, Xiaohui
    Li, Zhida
    Huang, Peng
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (05): : 6591 - 6608
  • [25] Fast Multi-Level Connected Component Labeling for Large-scale Images
    Li, Yuhai
    2015 INTERNATIONAL CONFERENCE ON OPTOELECTRONICS AND MICROELECTRONICS (ICOM), 2015, : 334 - 337
  • [26] Rotated ship target detection algorithm in SAR images based on global feature fusion
    Xue, Fengtao
    Sun, Tianyu
    Yang, Yimin
    Yang, Jian
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2024, 46 (12): : 4044 - 4053
  • [27] Road Crack Model Based on Multi-Level Feature Fusion and Attention Mechanism
    Song, Rongrong
    Wang, Caiyong
    Tian, Qichuan
    Zhang, Qi
    Computer Engineering and Applications, 2023, 59 (13): : 281 - 288
  • [28] Attention-based Multi-level Feature Fusion for Named Entity Recognition
    Yang, Zhiwei
    Chen, Hechang
    Zhang, Jiawei
    Ma, Jing
    Chang, Yi
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 3594 - 3600
  • [29] Multi-level and Multi-modal Target Detection Based on Feature Fusion
    Cheng T.
    Sun L.
    Hou D.
    Shi Q.
    Zhang J.
    Chen J.
    Huang H.
    Qiche Gongcheng/Automotive Engineering, 2021, 43 (11): : 1602 - 1610
  • [30] An Object Detection Method Combining Multi-Level Feature Fusion and Region Channel Attention
    Zhu, Ge
    Wei, Zizun
    Lin, Feng
    IEEE ACCESS, 2021, 9 : 25101 - 25109