Personalized Behavior-Aware Transformer for Multi-Behavior Sequential Recommendation

被引:8
|
作者
Su, Jiajie [1 ]
Chen, Chaochao [1 ]
Lin, Zibin [1 ]
Li, Xi [1 ]
Liu, Weiming [1 ]
Zheng, Xiaolin [1 ]
机构
[1] Zhejiang Univ, Coll Comp Sci, Hangzhou, Peoples R China
基金
国家重点研发计划;
关键词
Sequential Recommendation; Multi-Behavior Modeling; Self-Attention;
D O I
10.1145/3581783.3611723
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sequential Recommendation (SR) captures users' dynamic preferences by modeling how users transit among items. However, SR models that utilize only single type of behavior interaction data encounter performance degradation when the sequences are short. To tackle this problem, we focus on Multi-Behavior Sequential Recommendation (MBSR) in this paper, which aims to leverage time-evolving heterogeneous behavioral dependencies for better exploring users' potential intents on the target behavior. Solving MBSR is challenging. On the one hand, users exhibit diverse multi-behavior patterns due to personal characteristics. On the other hand, there exists comprehensive co-influence between behavior correlations and item collaborations, the intensity of which is deeply affected by temporal factors. To tackle these challenges, we propose a Personalized Behavior-Aware Transformer framework (PBAT) for MBSR problem, which models personalized patterns and multifaceted sequential collaborations in a novel way to boost recommendation performance. First, PBAT develops a personalized behavior pattern generator in the representation layer, which extracts dynamic and discriminative behavior patterns for sequential learning. Second, PBAT reforms the self-attention layer with a behavior-aware collaboration extractor, which introduces a fused behavior-aware attention mechanism for incorporating both behavioral and temporal impacts into collaborative transitions. We conduct experiments on three benchmark datasets and the results demonstrate the effectiveness and interpretability of our framework.
引用
收藏
页码:6321 / 6331
页数:11
相关论文
共 50 条
  • [31] Multi-behavior recommendation based on intent learning
    Xinglin Pan
    Mingxin Gan
    Multimedia Systems, 2023, 29 : 3655 - 3668
  • [32] Graph Meta Network for Multi-Behavior Recommendation
    Xia, Lianghao
    Xu, Yong
    Huang, Chao
    Dai, Peng
    Bo, Liefeng
    SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 757 - 766
  • [33] Hierarchical Projection Enhanced Multi-behavior Recommendation
    Meng, Chang
    Zhang, Hengyu
    Guo, Wei
    Guo, Huifeng
    Liu, Haotian
    Zhang, Yingxue
    Zheng, Hongkun
    Tang, Ruiming
    Li, Xiu
    Zhang, Rui
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 4649 - 4660
  • [34] Multi-behavior Recommendation with Graph Convolutional Networks
    Jin, Bowen
    Gao, Chen
    He, Xiangnan
    Jin, Depeng
    Li, Yong
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 659 - 668
  • [35] Multi-behavior recommendation based on intent learning
    Pan, Xinglin
    Gan, Mingxin
    MULTIMEDIA SYSTEMS, 2023, 29 (06) : 3655 - 3668
  • [36] The graph-based behavior-aware recommendation for interactive news
    Mingyuan Ma
    Sen Na
    Hongyu Wang
    Congzhou Chen
    Jin Xu
    Applied Intelligence, 2022, 52 : 1913 - 1929
  • [37] The graph-based behavior-aware recommendation for interactive news
    Ma, Mingyuan
    Na, Sen
    Wang, Hongyu
    Chen, Congzhou
    Xu, Jin
    APPLIED INTELLIGENCE, 2022, 52 (02) : 1913 - 1929
  • [38] Accurate multi-behavior sequence-aware recommendation via graph convolution networks
    Kim, Doyeon
    Tanwar, Saurav
    Kang, U.
    PLOS ONE, 2025, 20 (01):
  • [39] Multi-behavior aware service recommendation based on hypergraph graph convolution neural network
    Lu J.-W.
    Li D.-N.
    Wang C.-C.
    Xu J.
    Xiao G.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2023, 57 (10): : 1977 - 1986
  • [40] A Behavior-Aware Graph Convolution Network Model for Video Recommendation
    Zhuo, Wei
    Liu, Kunchi
    Xue, Taofeng
    Jin, Beihong
    Li, Beibei
    Dong, Xinzhou
    Chen, He
    Pan, Wenhai
    Zhang, Xuejian
    Zhou, Shuo
    WEB AND BIG DATA, APWEB-WAIM 2021, PT II, 2021, 12859 : 279 - 294