Efficient spectral collocation method for nonlinear systems of fractional pantograph delay differential equations

被引:0
|
作者
Zaky, M. A. [1 ]
Babatin, M. [1 ]
Hammad, M. [2 ]
Akgul, A. [3 ,4 ]
Hendy, A. S. [5 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, POB 65892, Riyadh 11566, Saudi Arabia
[2] Beni Suef Univ, Fac Sci, Dept Math, Bani Suwayf, Egypt
[3] Siirt Univ, Art & Sci Fac, Dept Math, TR-56100 Siirt, Turkiye
[4] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon
[5] Ural Fed Univ, Inst Nat Sci & Math, Dept Computat Math & Comp Sci, 19 Mira St, Ekaterinburg 620002, Russia
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 06期
关键词
mapped Jacobi functions; spectral methods; convergence analysis; pantograph delay differential equations;
D O I
10.3934/math.2024740
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Caputo-Hadamard-type fractional calculus involves the logarithmic function of an arbitrary exponent as its convolutional kernel, which causes challenges in numerical approximations. In this paper, we construct and analyze a spectral collocation approach using mapped Jacobi functions as basis functions and construct an efficient algorithm to solve systems of fractional pantograph delay differential equations involving Caputo-Hadamard fractional derivatives. What we study is the error estimates of the derived method. In addition, we tabulate numerical results to support our theoretical analysis.
引用
收藏
页码:15246 / 15262
页数:17
相关论文
共 50 条