共 50 条
Integrated cathode-electrolyte (Li6.55La3Zr1.55Ta0.45O12/PEO-LiTFSI) architecture driven excellent performance of solid-state lithium metal batteries
被引:2
|作者:
Das, Asish Kumar
[1
]
Badole, Manish
[1
]
Vasavan, Hari Narayanan
[1
]
Saxena, Samriddhi
[1
]
Gami, Pratiksha
[1
]
Dagar, Neha
[1
]
Kumar, Sunil
[1
,2
]
机构:
[1] Indian Inst Technol Indore, Dept Met Engn & Mat Sci, Simrol 453552, India
[2] Indian Inst Technol Indore, Ctr Elect Vehicle & Intelligent Transport Syst, Simrol 453552, India
关键词:
All-solid-state cells;
Garnet;
Composite electrolytes;
Cathode-electrolyte interface;
Doctor-blade coating;
TA-DOPED LI7LA3ZR2O12;
CERAMIC ELECTROLYTES;
CONDUCTIVITY;
D O I:
10.1016/j.est.2024.112452
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
The solid electrolytes in solid-state lithium batteries suffer due to low room temperature conductivity (< 10(-4) S cm(-1)) and sluggish lithium-ion transport at the electrode-electrolyte interface. To fabricate solid-state lithium metal batteries employing composite solid electrolyte, Ta-doped Li7La3Zr2O12 (LLZTO) with room temperature conductivity similar to 6.1 x 10(-4) S cm(-1) was synthesized and dispersed in polyethylene oxide-lithium bis(trifluoromethanesulfonyl)imide (PEO-LiTFSI) polymer-salt matrix in different proportions. The sample SCE20 (20 wt% LLZTO & 80 wt% PEO-LITFSI), showing the best effective lithium-ion conductivity amongst all compositions (similar to 1.44 x 10(-4) S cm(-1)), was used to fabricate lithium symmetric cells and all-solid-state cells with LiFePO4 cathode in conjunction with lithium metal as the anode. The fabricated lithium symmetric cells showed high cyclability (>1100 h) with a low overpotential of similar to 180 mV at a current density of similar to 0.4 mA cm(-2). The LiFePO4 cells with monolithic cathode-SCE20 electrolyte architecture in conjunction with lithium metal as the anode exhibited similar to 50 % lower interfacial resistance and delivered similar to 84.2 % capacity retention after 1000 cycles at 1C with an initial discharge capacity of similar to 133 mAh g(-1). This facile, cost-efficient design of integrated cathode-electrolyte architecture by a doctor blade coating method can drive the application of solid-state lithium metal batteries on a commercial scale.
引用
收藏
页数:10
相关论文