Effect of Li6.4La3Zr1.4Ta0.6O12 Fillers on the Interfacial Properties between Composite PEO-LiTFSI Electrolytes with Li Metal during Cycling

被引:6
|
作者
Zhang, Lun [1 ]
Feng, Junrun [2 ]
Zhu, Guanghan [1 ]
Yan, Jay [1 ]
Bartlett, Stuart [3 ]
Wang, Zhipeng [1 ]
Hao, Zhangxiang [2 ]
Gao, Zhonghui [4 ]
Wang, Ryan [1 ]
机构
[1] UCL, Dept Chem Engn, Mat & Catalysis Lab, London WC1E 7JE, England
[2] Hubei Univ Technol, Sch Sci, Sch Chip Ind, Wuhan 430068, Hubei, Peoples R China
[3] Diamond Light Source, Harwell Sci & Innovat Campus, Didcot OX11 0DE, Oxon, England
[4] Tianjin Univ, Sch Mat Sci & Engn, Tianjin 300350, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
solid polymer electrolytes; all-solid-state lithium-ionbattery; Li6.4La3Zr1.4Ta0.6O12; interface; poly(ethyleneoxide); XANES; SOLID POLYMER ELECTROLYTE; IONIC-CONDUCTIVITY; ELECTROCHEMICAL STABILITY; LITHIUM; LI7LA3ZR2O12; BATTERIES; ENHANCEMENT; MEMBRANE;
D O I
10.1021/acsami.3c19519
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
PEO-LiX solid polymer electrolyte (SPE) with the addition of Li6.4La3Zr1.4Ta0.6O12 (LLZTO) fillers is considered as a promising solid-state electrolyte for solid-state Li-ion batteries. However, the developments of the SPE have caused additional challenges, such as poor contact interface and SPE/Li interface stability during cycling, which always lead to potentially catastrophic battery failure. The main problem is that the real impact of LLZTO fillers on the interfacial properties between SPE and Li metal is still unclear. Herein, we combined the electrochemical measurement and in situ synchrotron-based X-ray absorption near-edge structure (XANES) imaging technology to study the role of LLZTO fillers in directing SPE/Li interface electrochemical performance. In situ XRF-XANES mapping during cycling showed that addition of an appropriate amount of LLZTO fillers (50 wt %) can improve the interfacial contact and stability between SPE and Li metal without reacting with the PEO and Li salts. Additionally, it also demonstrated the beneficial effect of LLZTO particles for suppressing the interface reactions between the Li metal and PEO-LiTFSI SPE and further inhibiting Li-metal dendrite growth. The Li|LiFePO4 batteries deliver long cycling for over 700 cycles with a low-capacity fade rate of 0.08% per cycle at a rate of 0.3C, revealing tremendous potential in promoting the large-scale application of future solid-state Li-ion batteries.
引用
收藏
页码:13786 / 13794
页数:9
相关论文
共 50 条
  • [1] Cold Sintering of Li6.4La3Zr1.4Ta0.6O12/PEO Composite Solid Electrolytes
    He, Binlang
    Kang, Shenglin
    Zhao, Xuetong
    Zhang, Jiexin
    Wang, Xilin
    Yang, Yang
    Yang, Lijun
    Liao, Ruijin
    MOLECULES, 2022, 27 (19):
  • [2] Lowering the Interfacial Resistance in Li6.4La3Zr1.4Ta0.6O12| Poly(Ethylene Oxide) Composite Electrolytes
    Kuhnert, Eveline
    Ladenstein, Lukas
    Jodlbauer, Anna
    Slugovc, Christian
    Trimmel, Gregor
    Wilkening, H. Martin R.
    Rettenwander, Daniel
    CELL REPORTS PHYSICAL SCIENCE, 2020, 1 (10):
  • [3] A dopamine modified Li6.4La3Zr1.4Ta0.6O12/PEO solid-state electrolyte: enhanced thermal and electrochemical properties
    Huang, Zeya
    Pang, Wanying
    Liang, Peng
    Jin, Zhehui
    Grundish, Nicholas
    Li, Yutao
    Wang, Chang-An
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (27) : 16425 - 16436
  • [4] A Novel Aqueous-based Gelcasting Process to Fabricate Li6.4La3Zr1.4Ta0.6O12 Solid Electrolytes
    Peng, Xiang
    Zhang, Xiaokun
    Huang, Kai
    Song, Shipai
    Xiang, Yong
    CHEMELECTROCHEM, 2019, 6 (11) : 2945 - 2948
  • [5] High-precision direct ink writing of Li6.4La3Zr1.4Ta0.6O12
    Chen, Bo
    Willenbacher, Norbert
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2022, 42 (16) : 7491 - 7500
  • [6] Preparation and Electrochemical Properties of Bicontinuous Solid Electrolytes Derived from Porous Li6.4La3Zr1.4Ta0.6O12 Incorporated with Succinonitrile
    Chen, Fei
    Rannalter, Leana Ziwen
    Xiang, Xing
    Zhang, Yanhua
    Song, Shangbin
    Cao, Shiyu
    Shen, Qiang
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (11)
  • [7] Preparation and Electrochemical Performance of Li6.4La3Zr1.4Ta0.6O12/Polymer-Based Solid Composite Electrolyte
    Tu Fang-Fang
    Xie Jian
    Guo Feng
    Zhao Xin-Bing
    Wang Yu-Ping
    Chen Dong
    Xiang Jia-Yuan
    Chen Jian
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2020, 36 (08) : 1515 - 1523
  • [8] Elastic Modulus,Hardness,and Fracture Toughness of Li6.4La3Zr1.4Ta0.6O12 Solid Electrolyte
    Shan Hu
    Pengyu Xu
    Luize Scalco de Vasconcelos
    Lia Stanciu
    Hongwei Ni
    Kejie Zhao
    Chinese Physics Letters, 2021, 38 (09) : 163 - 173
  • [9] Elastic Modulus, Hardness, and Fracture Toughness of Li6.4La3Zr1.4Ta0.6O12 Solid Electrolyte
    Hu, Shan
    Xu, Pengyu
    de Vasconcelos, Luize Scalco
    Stanciu, Lia
    Ni, Hongwei
    Zhao, Kejie
    CHINESE PHYSICS LETTERS, 2021, 38 (09)
  • [10] High critical current density in Li6.4La3Zr1.4Ta0.6O12 electrolyte via interfacial engineering with complex hydride
    Lv, Ying-Tong
    Zhang, Teng-Fei
    Hu, Zhao-Tong
    Xia, Guang-Lin
    Huang, Ze-Ya
    Liu, Zhen-Hua
    Que, Li-Hua
    Yuan, Cai-Ting
    Guo, Fang-Qin
    Ichikawa, Takayuki
    Yu, Xue-Bin
    RARE METALS, 2024, 43 (02) : 692 - 701