Preparation of Dextran- and Carboxymethyl Dextran-Coated Fe3O4 Nanoparticles for Breast Cancer Cell Labeling and Magnetic Hyperthermia

被引:0
|
作者
Ying, Yao [1 ,2 ]
Zhou, Yikai [1 ,2 ]
Yu, Jing [1 ,2 ]
Qiao, Liang [1 ,2 ]
Zheng, Jingwu [1 ,2 ]
Li, Wangchang [1 ,2 ]
Li, Juan [1 ,2 ]
Che, Shenglei [1 ,2 ]
机构
[1] Zhejiang Univ Technol, Coll Mat Sci & Engn, Hangzhou 310014, Peoples R China
[2] Zhejiang Univ Technol, Res Ctr Magnet & Elect Mat, Hangzhou 310014, Peoples R China
基金
中国国家自然科学基金;
关键词
Magnetic nanoparticles; Breast cancer; Magnetic hyperthermia; Co-precipitation; IRON-OXIDE NANOPARTICLES; HEATING EFFICIENCY; THERAPY;
D O I
10.1007/s10948-024-06788-5
中图分类号
O59 [应用物理学];
学科分类号
摘要
Breast cancer is one of the deadliest cancers for women, so cell labeling and therapy of breast cancer become imperative. In this work, dextran- and carboxymethyl dextran-coated Fe3O4 nanoparticles (Fe3O4@DEX and Fe3O4@CMD) were well synthesized through the co-precipitation method. The dextran and carboxymethyl dextran coating reduces the average particle size of Fe3O4 nanoparticles from 10.9 to 4.0-5.5 nm, and the coated samples exhibit average hydrodynamic diameters ranging from 31 to 110 nm. The coating promotes the dispersibility of nanoparticles. Saturation magnetization is reduced from 60.3 to 5.6-7.1 emu/g in the coated MNPs due to the large weight ratio of the coating layer and the decrease in particle size. Hemolysis and cytotoxicity assay results indicate the excellent biocompatibility of Fe3O4 nanoparticles. The cellular uptake assay confirms that both dextran- and carboxymethyl dextran-coated Fe3O4 nanoparticles are easily taken in by breast cancer cells. Comprehensively considering dispersion, biocompatibility, and cellular uptake, the Fe3O4@CMD is more suitable for application in the bio-labeling of breast cancer cells. The SAR values of the Fe3O4@DEX and Fe3O4@CMD range from 19.2 to 30.7 W/g. The SAR value is mainly influenced by the hydrodynamic diameter in the coated samples. The Fe3O4@CMD20 shows the maximum SAR value of 30.7 W/g and has potential application in magnetic hyperthermia therapy.
引用
收藏
页码:1453 / 1463
页数:11
相关论文
共 50 条
  • [41] Size dependent magnetic hyperthermia of octahedral Fe3O4 nanoparticles
    Lv, Y.
    Yang, Y.
    Fang, J.
    Zhang, H.
    Peng, E.
    Liu, X.
    Xiao, W.
    Ding, J.
    RSC ADVANCES, 2015, 5 (94) : 76764 - 76771
  • [42] Tailoring biocompatible Fe3O4 nanoparticles for applications to magnetic hyperthermia
    Insausti, Maite
    Salado, Javier
    Castellanos, Idoia
    Lezama, Luis
    Gil de Muro, Izaskun
    de la Fuente, Jesus M.
    Garayo, Eneko
    Plazaola, Fernando
    Rojoa, Teofilo
    COLLOIDAL NANOCRYSTALS FOR BIOMEDICAL APPLICATIONS VII, 2012, 8232
  • [43] SYNTHESIS AND CHARACTERAIZATION OF Fe3O4 NANOPARTICLES FOR MAGNETIC HYPERTHERMIA APPLICATION
    Ramesh, R.
    Ponnusamy, S.
    Muthamizhchelvan, C.
    INTERNATIONAL CONFERENCE ON MAGNETIC MATERIALS (ICMM-2010), 2010, 1347 : 19 - 22
  • [44] Magnetic Nanoparticle Hyperthermia Using Pluronic-Coated Fe3O4 Nanoparticles: An In Vitro Study
    Tomitaka, Asahi
    Yamada, Tsutomu
    Takemura, Yasushi
    JOURNAL OF NANOMATERIALS, 2012, 2012
  • [45] Chitosan-Coated Superparamagnetic Fe3O4 Nanoparticles for Magnetic Resonance Imaging, Magnetic Hyperthermia, and Drug Delivery
    Mistral, Jules
    Koon, Kevin Tse Ve
    Cotica, Luiz Fernando
    Dias, Gustavo Sanguino
    Santos, Ivair Aparecido
    Alcouffe, Pierre
    Milhau, Nadege
    Pin, Didier
    Chapet, Olivier
    Serghei, Anatoli
    Sudre, Guillaume
    Ladaviere, Catherine
    De Oliveira, Paula Nunes
    David, Laurent
    ACS APPLIED NANO MATERIALS, 2024, 7 (07) : 7097 - 7110
  • [46] Preparation and characterization of carbon fibers coated by Fe3O4 nanoparticles
    Xu, Jing
    Yang, Haibin
    Fu, Wuyou
    Sui, Yongming
    Zhu, Hongyang
    Li, Minghui
    Zou, Guangtian
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2006, 132 (03): : 307 - 310
  • [47] A moderate method for preparation DMSA coated Fe3O4 nanoparticles
    Song, L. N.
    Gu, N.
    Zhang, Y.
    5TH GLOBAL CONFERENCE ON MATERIALS SCIENCE AND ENGINEERING, 2017, 164
  • [48] Mössbauer investigations of Fe and Fe3O4 magnetic nanoparticles for hyperthermia applications
    A. S. Kamzin
    Physics of the Solid State, 2016, 58 : 532 - 539
  • [49] Preparation and Characterization of CTAB-Coated Fe3O4 Nanoparticles
    Khoshnevisan, Kamyar
    Barkhi, Mohammad
    Zare, Davood
    Davoodi, Daryoush
    Tabatabaei, Meisam
    SYNTHESIS AND REACTIVITY IN INORGANIC METAL-ORGANIC AND NANO-METAL CHEMISTRY, 2012, 42 (05) : 644 - 648
  • [50] Dextran-coated iron oxide nanoparticle for delivery of miR-29a to breast cancer cell line
    Yalcin, Serap
    PHARMACEUTICAL DEVELOPMENT AND TECHNOLOGY, 2019, 24 (08) : 1032 - 1037