Viscoelastic hydrogels regulate adipose-derived mesenchymal stem cells for nucleus pulposus regeneration

被引:0
|
作者
Liu, Yin [1 ,2 ]
Li, Li [2 ,3 ]
Li, Xuan
Cherif, Hosni [3 ]
Jiang, Shuaibing [2 ]
Ghezelbash, Farshid [2 ]
Weber, Michael H. [3 ]
Juncker, David [1 ,4 ,5 ]
Li-Jessen, Nicole Y. K. [1 ,6 ,8 ,9 ]
Haglund, Lisbet [2 ,3 ,7 ]
Li, Jianyu [1 ,2 ,3 ]
机构
[1] McGill Univ, Dept Biomed Engn, 3775 Rue Univ, Montreal, PQ H3A 2B4, Canada
[2] McGill Univ, Dept Mech Engn, 817 Sherbrooke St West, Montreal, PQ H3A 0C3, Canada
[3] McGill Univ, Dept Surg, 1650 Cedar Ave, Montreal, PQ H3G 1A4, Canada
[4] McGill Univ, 740 Ave Dr Penfield, Montreal, PQ H4A 0G1, Canada
[5] Genome Quebec Innovat Ctr, 740 Ave Dr Penfield, Montreal, PQ H4A 0G1, Canada
[6] McGill Univ, Sch Commun Sci & Disorders, 2001 McGill Coll Ave, Montreal, PQ H3A 1G1, Canada
[7] Shriners Hosp Children, 1003 Bd Decarie, Montreal, PQ H4A 0A9, Canada
[8] McGill Univ, Dept Otolaryngol Head & Neck Surg, Hlth Ctr, 1001 Bd Decarie, Montreal, PQ H4A 3J1, Canada
[9] McGill Univ, Hlth Ctr, Res Inst, 1001 Bd Decarie, Montreal, PQ H4A 3J1, Canada
基金
加拿大健康研究院; 加拿大自然科学与工程研究理事会;
关键词
Hydrogels; Stem cells; Matrix viscoelasticity; Mechanotransduction; Intervertebral disc regeneration; Low back pain; INTERVERTEBRAL DISC DEGENERATION; EXTRACELLULAR-MATRIX; GENE-EXPRESSION; BONE-MARROW; ALGINATE; BEHAVIOR; DIFFERENTIATION; BIOMATERIALS; ELASTICITY; INDUCTION;
D O I
10.1016/j.actbio.2024.04.017
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Low back pain is a leading cause of disability worldwide, often attributed to intervertebral disc (IVD) degeneration with loss of the functional nucleus pulposus (NP). Regenerative strategies utilizing biomaterials and stem cells are promising for NP repair. Human NP tissue is highly viscoelastic, relaxing stress rapidly under deformation. However, the impact of tissue -specific viscoelasticity on the activities of adipose -derived stem cells (ASC) remains largely unexplored. Here, we investigated the role of matrix viscoelasticity in regulating ASC differentiation for IVD regeneration. Viscoelastic alginate hydrogels with stress relaxation time scales ranging from 100 s to 10 0 0s were developed and used to culture human ASCs for 21 days. Our results demonstrated that the fast -relaxing hydrogel significantly enhanced ASCs longterm cell survival and NP -like extracellular matrix secretion of aggrecan and type -II collagen. Moreover, gene expression analysis revealed a substantial upregulation of the mechanosensitive ion channel marker TRPV4 and NP -specific markers such as SOX9, HIF-1 alpha , KRT18, CDH2 and CD24 in ASCs cultured within the fast -relaxing hydrogel, compared to slower -relaxing hydrogels. These findings highlight the critical role of matrix viscoelasticity in regulating ASC behavior and suggest that viscoelasticity is a key parameter for novel biomaterials design to improve the efficacy of stem cell therapy for IVD regeneration.
引用
收藏
页码:244 / 261
页数:18
相关论文
共 50 条
  • [21] CARTILAGE REGENERATION BY AUTOLOGOUS ADIPOSE-DERIVED MESENCHYMAL STEM CELLS FOR THE TREATMENT OF OSTEOARTHRITIS
    Jiang, Y.
    Iwata, S.
    Yang, C.
    Shirakawa, K.
    Matsuoka, T.
    CYTOTHERAPY, 2019, 21 (05) : S83 - S84
  • [22] Human adipose-derived mesenchymal stem cells accelerate decellularized neobladder regeneration
    Moreno-Manzano, Victoria
    Mellado-Lopez, Maravillas
    Jose Morera-Esteve, Maria
    Alastrue-Agudo, Ana
    Bisbal-Velasco, Viviana
    Forteza-Vila, Jeronimo
    Serrano-Aroca, Angel
    David Vera-Donoso, Cesar
    REGENERATIVE BIOMATERIALS, 2020, 7 (02) : 161 - 169
  • [23] The Effects of Adipose-Derived Mesenchymal Stem Cells and Adipose-Derived Mesenchymal Stem Cell-Originating Exosomes on Nerve Allograft Regeneration An Experimental Study in Rats
    Koplay, Tugba Gun
    Yildiran, Gokce
    Dursunoglu, Duygu
    Aktan, Murad
    Duman, Selcuk
    Akdag, Osman
    Karamese, Mehtap
    Tosun, Zekeriya
    ANNALS OF PLASTIC SURGERY, 2023, 90 (03) : 261 - 266
  • [24] Comparison of the differentiation abilities of bone marrow-derived mesenchymal stem cells and adipose-derived mesenchymal stem cells toward nucleus pulposus-like cells in three-dimensional culture
    Dai, Xuejun
    Guan, Yanyu
    Zhang, Zhongzi
    Xiong, Ying
    Liu, Chengwei
    Li, Haifeng
    Liu, Bailian
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2021, 22 (03)
  • [25] Collagen type II and nucleus pulposus cells: Synergistic effects on chondrogenic differentiation of adipose-derived stem cells
    Lu, Z. F.
    Wuisman, P. I.
    Zandieh, Doulabi B.
    Bank, R. A.
    Helder, M. N.
    TISSUE ENGINEERING, 2007, 13 (07): : 1658 - 1659
  • [26] Constructing Tissue Engineered Nucleus Pulposus with Adipose-Derived Stem Cells and an Injectable Thermosensitive Chitosan Scaffold
    Wen, Tianyong
    Zhang, Chao
    Ruan, Dike
    Li, Fang
    Ma, Jian
    JOURNAL OF BIOMATERIALS AND TISSUE ENGINEERING, 2014, 4 (12) : 1073 - 1079
  • [27] Strategies for regeneration of the bone using porcine adult adipose-derived mesenchymal stem cells
    Monaco, E.
    Bionaz, M.
    Hollister, S. J.
    Wheeler, M. B.
    THERIOGENOLOGY, 2011, 75 (08) : 1381 - 1399
  • [28] Xenotransplant of human adipose-derived mesenchymal stem cells
    Meyerrose, T
    DeUgarte, DA
    McNamara, G
    Hedrick, MH
    Nolta, JA
    EXPERIMENTAL HEMATOLOGY, 2002, 30 (06) : 142 - 142
  • [29] Adipose-derived mesenchymal stem cells and regenerative medicine
    Konno, Masamitsu
    Hamabe, Atsushi
    Hasegawa, Shinichiro
    Ogawa, Hisataka
    Fukusumi, Takahito
    Nishikawa, Shimpei
    Ohta, Katsuya
    Kano, Yoshihiro
    Ozaki, Miyuki
    Noguchi, Yuko
    Sakai, Daisuke
    Kudoh, Toshihiro
    Kawamoto, Koichi
    Eguchi, Hidetoshi
    Satoh, Taroh
    Tanemura, Masahiro
    Nagano, Hiroaki
    Doki, Yuichiro
    Mori, Masaki
    Ishii, Hideshi
    DEVELOPMENT GROWTH & DIFFERENTIATION, 2013, 55 (03) : 309 - 318
  • [30] Adipose-derived stem cells for wound repair and regeneration
    Shingyochi, Yoshiaki
    Orbay, Hakan
    Mizunot, Hiroshi
    EXPERT OPINION ON BIOLOGICAL THERAPY, 2015, 15 (09) : 1285 - 1292