Advancements in Artificial Intelligence for the Diagnosis of Multidrug Resistance and Extensively Drug-Resistant Tuberculosis: A Comprehensive Review

被引:2
|
作者
Priya, K. Shanmuga [1 ]
Mani, Anbumaran Parivakkam [2 ]
Geethalakshmi, S. [3 ]
Yadav, Sankalp [4 ]
机构
[1] Dr MGR Educ & Res Inst, Sri Lalithambigai Med Coll & Hosp, Fac Med, Dept Pulmonol, Chennai, India
[2] Saveetha Univ, Saveetha Med Coll & Hosp, Saveetha Inst Med & Tech Sci, Dept Resp Med, Chennai, India
[3] Dr MGR Educ & Res Inst, Sri Lalithambigai Med Coll & Hosp, Dept Microbiol, Chennai, India
[4] Shri Madan Lal Khurana Chest Clin, Dept Med, New Delhi, India
关键词
mycobacterium tuberculosis (mtb); intestinal tb; multiple-drug resistant tuberculosis (mdr-tb); xdr-tb; extensively drug resistant tuberculosis; mdr tb; artificial intelligence; PULMONARY TUBERCULOSIS;
D O I
10.7759/cureus.60280
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Tuberculosis (TB) remains a significant global health concern, particularly with the emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB). Traditional methods for diagnosing drug resistance in TB are time-consuming and often lack accuracy, leading to delays in appropriate treatment initiation and exacerbating the spread of drug-resistant strains. In recent years, artificial intelligence (AI) techniques have shown promise in revolutionizing TB diagnosis, offering rapid and accurate identification of drug-resistant strains. This comprehensive review explores the latest advancements in AI applications for the diagnosis of MDR-TB and XDR-TB. We discuss the various AI algorithms and methodologies employed, including machine learning, deep learning, and ensemble techniques, and their comparative performances in TB diagnosis. Furthermore, we examine the integration of AI with novel diagnostic modalities such as whole-genome sequencing, molecular assays, and radiological imaging, enhancing the accuracy and efficiency of TB diagnosis. Challenges and limitations surrounding the implementation of AI in TB diagnosis, such as data availability, algorithm interpretability, and regulatory considerations, are also addressed. Finally, we highlight future directions and opportunities for the integration of AI into routine clinical practice for combating drug-resistant TB, ultimately contributing to improved patient outcomes and enhanced global TB control efforts.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Artificial Intelligence in Drug-Resistant Tuberculosis Diagnosis. Systematic Review & Meta Analysis
    Herman, B.
    Sirichokchatcawan, W.
    Pongpanich, S.
    Nantasenamat, C.
    EUROPEAN JOURNAL OF PUBLIC HEALTH, 2020, 30
  • [22] Extensively drug-resistant tuberculosis
    LoBue, Philip
    CURRENT OPINION IN INFECTIOUS DISEASES, 2009, 22 (02) : 167 - 173
  • [23] Extensively Drug-Resistant Tuberculosis
    Dheda, Keertan
    Shean, Karen
    Badri, Motasim
    NEW ENGLAND JOURNAL OF MEDICINE, 2008, 359 (22): : 2390 - 2390
  • [24] Extensively drug-resistant tuberculosis
    Jassal, Mandeep
    Bishai, William R.
    LANCET INFECTIOUS DISEASES, 2009, 9 (01): : 19 - 30
  • [25] Extensively drug-resistant tuberculosis
    Lange, C.
    Grobusth, M. P.
    Wagner, D.
    DEUTSCHE MEDIZINISCHE WOCHENSCHRIFT, 2008, 133 (08) : 374 - 376
  • [26] Extensively drug-resistant tuberculosis
    Madariaga, Miguel G.
    Lalloo, Umesh G.
    Swindells, Susan
    AMERICAN JOURNAL OF MEDICINE, 2008, 121 (10): : 835 - 844
  • [27] Extensively drug-resistant tuberculosis
    Todd, Betsy
    AMERICAN JOURNAL OF NURSING, 2007, 107 (06) : 29 - 31
  • [28] The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis
    Dheda, Keertan
    Gumbo, Tawanda
    Maartens, Gary
    Dooley, Kelly E.
    McNerney, Ruth
    Murray, Megan
    Furin, Jennifer
    Nardell, Edward A.
    London, Leslie
    Lessem, Erica
    Theron, Grant
    van Helden, Paul
    Niemann, Stefan
    Merker, Matthias
    Dowdy, David
    Van Rie, Annelies
    Siu, Gilman K. H.
    Pasipanodya, Jotam G.
    Rodrigues, Camilla
    Clark, Taane G.
    Sirgel, Frik A.
    Esmail, Aliasgar
    Lin, Hsien-Ho
    Atre, Sachin R.
    Schaaf, H. Simon
    Chang, Kwok Chiu
    Lange, Christoph
    Nahid, Payam
    Udwadia, Zarir F.
    Horsburgh, C. Robert, Jr.
    Churchyard, Gavin J.
    Menzies, Dick
    Hesseling, Anneke C.
    Nuermberger, Eric
    McIlleron, Helen
    Fennelly, Kevin P.
    Goemaere, Eric
    Jaramillo, Ernesto
    Low, Marcus
    Moran Jara, Carolina
    Padayatchi, Nesri
    Warren, Robin M.
    LANCET RESPIRATORY MEDICINE, 2017, 5 (04): : 291 - 360
  • [29] Clinical and genotypic characteristics of extensively drug-resistant and multidrug-resistant tuberculosis
    Lai, C. C.
    Tan, C. K.
    Lin, S. H.
    Liao, C. H.
    Huang, Y. T.
    Chou, C. H.
    Hsu, H. L.
    Wang, C. Y.
    Lin, H. I.
    Hsueh, P. R.
    EUROPEAN JOURNAL OF CLINICAL MICROBIOLOGY & INFECTIOUS DISEASES, 2010, 29 (05) : 597 - 600
  • [30] Multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis:: epidemiology and control
    Matteelli, Alberto
    Migliori, Giovanni Battista
    Cirillo, Daniela
    Centis, Rosella
    Girardi, Enrico
    Roviglione, Mario
    EXPERT REVIEW OF ANTI-INFECTIVE THERAPY, 2007, 5 (05) : 857 - 871