Local parameters of supercuspidal representations

被引:0
|
作者
Gan, Wee Teck [1 ]
Harris, Michael [2 ]
Sawin, Will [3 ]
Beuzart-Plessis, Raphael [4 ]
机构
[1] Natl Univ Singapore, Math Dept, Block S17,10 Lower Kent Ridge Rd, Singapore 119076, Singapore
[2] Columbia Univ, Dept Math, New York, NY 10027 USA
[3] Princeton Univ, Dept Math, Princeton, NJ 08540 USA
[4] Aix Marseille Univ, Inst Math Marseille, F-13009 Marseille, France
来源
FORUM OF MATHEMATICS PI | 2024年 / 12卷
基金
欧洲研究理事会;
关键词
22E50; 11S37; 11F80; 11F70; LANGLANDS CORRESPONDENCE; SHEAVES; GL(N);
D O I
10.1017/fmp.2024.10
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a connected reductive group G over a nonarchimedean local field F of positive characteristic, Genestier-Lafforgue and Fargues-Scholze have attached a semisimple parameter ${\mathcal {L}}<^>{ss}(\pi )$ to each irreducible representation $\pi $ . Our first result shows that the Genestier-Lafforgue parameter of a tempered $\pi $ can be uniquely refined to a tempered L-parameter ${\mathcal {L}}(\pi )$ , thus giving the unique local Langlands correspondence which is compatible with the Genestier-Lafforgue construction. Our second result establishes ramification properties of ${\mathcal {L}}<^>{ss}(\pi )$ for unramified G and supercuspidal $\pi $ constructed by induction from an open compact (modulo center) subgroup. If ${\mathcal {L}}<^>{ss}(\pi )$ is pure in an appropriate sense, we show that ${\mathcal {L}}<^>{ss}(\pi )$ is ramified (unless G is a torus). If the inducing subgroup is sufficiently small in a precise sense, we show $\mathcal {L}<^>{ss}(\pi )$ is wildly ramified. The proofs are via global arguments, involving the construction of Poincar & eacute; series with strict control on ramification when the base curve is ${\mathbb {P}}<^>1$ and a simple application of Deligne's Weil II.
引用
收藏
页数:41
相关论文
共 50 条