Query-based Temporal Fusion with Explicit Motion for 3D Object Detection

被引:0
|
作者
Hou, Jinghua [1 ]
Liu, Zhe [1 ]
Liang, Dingkang [1 ]
Zou, Zhikang [2 ]
Ye, Xiaoqing [2 ]
Bai, Xiang [1 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China
[2] Baidu Inc, Beijing, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Effectively utilizing temporal information to improve 3D detection performance is vital for autonomous driving vehicles. Existing methods either conduct temporal fusion based on the dense BEV features or sparse 3D proposal features. However, the former does not pay more attention to foreground objects, leading to more computation costs and sub-optimal performance. The latter implements time-consuming operations to generate sparse 3D proposal features, and the performance is limited by the quality of 3D proposals. In this paper, we propose a simple and effective Query-based Temporal Fusion Network (QTNet). The main idea is to exploit the object queries in previous frames to enhance the representation of current object queries by the proposed Motion-guided Temporal Modeling (MTM) module, which utilizes the spatial position information of object queries along the temporal dimension to construct their relevance between adjacent frames reliably. Experimental results show our proposed QTNet outperforms BEV-based or proposal-based manners on the nuScenes dataset. Besides, the MTM is a plug-and-play module, which can be integrated into some advanced LiDAR-only or multi-modality 3D detectors and even brings new SOTA performance with negligible computation cost and latency on the nuScenes dataset. These experiments powerfully illustrate the superiority and generalization of our method. The code is available at https://github.com/AlmoonYsl/QTNet.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] PointPainting: Sequential Fusion for 3D Object Detection
    Vora, Sourabh
    Lang, Alex H.
    Helou, Bassam
    Beijbom, Oscar
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 4603 - 4611
  • [22] A multilevel fusion network for 3D object detection
    Xia, Chunlong
    Wei, Ping
    Wei, Wenwen
    Zheng, Nanning
    Neurocomputing, 2021, 437 : 107 - 117
  • [23] Dense projection fusion for 3D object detection
    Chen, Zhao
    Hu, Bin-Jie
    Luo, Chengxi
    Chen, Guohao
    Zhu, Haohui
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [24] Sparse Dense Fusion for 3D Object Detection
    Gao, Yulu
    Sima, Chonghao
    Shi, Shaoshuai
    Di, Shangzhe
    Liu, Si
    Li, Hongyang
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, : 10939 - 10946
  • [25] Voxel Field Fusion for 3D Object Detection
    Li, Yanwei
    Qi, Xiaojuan
    Chen, Yukang
    Wang, Liwei
    Li, Zeming
    Sun, Jian
    Jia, Jiaya
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 1110 - 1119
  • [26] Radar Voxel Fusion for 3D Object Detection
    Nobis, Felix
    Shafiei, Ehsan
    Karle, Phillip
    Betz, Johannes
    Lienkamp, Markus
    APPLIED SCIENCES-BASEL, 2021, 11 (12):
  • [27] Fully Sparse Fusion for 3D Object Detection
    Li, Yingyan
    Fan, Lue
    Liu, Yang
    Huang, Zehao
    Chen, Yuntao
    Wang, Naiyan
    Zhang, Zhaoxiang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (11) : 7217 - 7231
  • [28] Query-Based Hard-Image Retrieval for Object Detection at Test Time
    Ayers, Edward
    Sadeghi, Jonathan
    Redford, John
    Mueller, Romain
    Dokania, Puneet K.
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 12, 2023, : 14692 - 14700
  • [29] Fusion information enhanced method based on transformer for 3D object detection
    Jin Y.
    Tao C.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2023, 44 (12): : 297 - 306
  • [30] 3D object detection based on image and LIDAR fusion for autonomous driving
    Chen G.
    Yi H.
    Mao Z.
    International Journal of Vehicle Information and Communication Systems, 2023, 8 (03) : 237 - 251