Optimized Pt-Co Alloy Nanoparticles for Reverse Water-Gas Shift Activation of CO2

被引:0
|
作者
Szamosvolgyi, Akos [1 ]
Pito, Adam [1 ]
Efremova, Anastasiia [1 ]
Baan, Kornelia [1 ]
Kutus, Bence [2 ]
Suresh, Mutyala [1 ]
Sapi, Andras [1 ]
Szenti, Imre [1 ,3 ]
Kiss, Janos [1 ,3 ]
Kolonits, Tamas [4 ]
Fogarassy, Zsolt [4 ]
Pecz, Bela [4 ]
Kukovecz, Akos [1 ]
Konya, Zoltan [1 ,3 ]
机构
[1] Univ Szeged, Interdisciplinary Excellence Ctr, Dept Appl & Environm Chem, H-6720 Szeged, Hungary
[2] Univ Szeged, Dept Mol & Analyt Chem, H-6720 Szeged, Hungary
[3] HUN REN SZTE React Kinet & Surface Chem Res Grp, H-6720 Szeged, Hungary
[4] Inst Tech Phys & Mat Sci, HUN REN Ctr Energy Res, H-1121 Budapest, Hungary
关键词
Pt; Co; alloy nanoparticles; reversewater-gas shift reaction; carbon monoxide; PHOTOEMISSION-SPECTROSCOPY; CATALYTIC PERFORMANCE; SUPPORT; HYDROGENATION; ENERGY; SELECTIVITY; CHEMISTRY; OXIDATION; SIZE; RH;
D O I
10.1021/acsanm.4c00111
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Different Co contents were used to tune bimetallic Pt-Co nanoparticles with a diameter of 8 nm, resulting in Pt:Co ratios of 3.54, 1.51, and 0.96. These nanoparticles were then applied to the MCF-17 mesoporous silica support. The synthesized materials were characterized with HR-TEM, HAADF-TEM, EDX, XRD, BET, ICP-MS, in situ DRIFTS, and quasi in situ XPS techniques. The catalysts were tested in a thermally induced reverse water-gas shift reaction (CO2:H-2 = 1:4) at atmospheric pressure in the 200-700 degrees C temperature range. All bimetallic Pt-Co particles outperformed the pure Pt benchmark catalyst. The nanoparticles with a Pt:Co ratio of 1.51 exhibited 2.6 times higher activity and increased CO selectivity by 4% at 500 degrees C. Experiments proved that the electron accumulation and alloying effect on the Pt-Co particles are stronger with higher Co ratios. The production of CO followed the formate reaction pathway on all catalysts due to the face-centered-cubic structure, which is similar to the Pt benchmark. It is concluded that the enhanced properties of Co culminate at a Pt:Co ratio of 1.51 because decreasing the ratio to 0.96 results in lower activity despite having more Co atoms available for the electronic interaction, resulting in the lack of electron-rich Pt sites.
引用
收藏
页码:9968 / 9977
页数:10
相关论文
共 50 条
  • [31] K-Promoted Co-CeO2 Catalyst for the Reverse Water-Gas Shift Reaction
    Wang, Luhui
    Liu, Hui
    Chen, Ying
    Zhang, Renkun
    Yang, Shuqing
    [J]. CHEMISTRY LETTERS, 2013, 42 (07) : 682 - 683
  • [32] CO production from CO2 via reverse water-gas shift reaction performed in a chemical looping mode: Kinetics on modified iron oxide
    Wenzel, Marcus
    Dharanipragada, N. V. R. Aditya
    Galvita, Vladimir V.
    Poelman, Hilde
    Marin, Guy B.
    Rihko-Struckmann, Liisa
    Sundmacher, Kai
    [J]. JOURNAL OF CO2 UTILIZATION, 2017, 17 : 60 - 68
  • [33] Production of Liquid Hydrocarbons with CO2 as Carbon Source based on Reverse Water-Gas Shift and Fischer-Tropsch Synthesis
    Kaiser, Philipp
    Unde, Rajabhau Bajirao
    Kern, Christoph
    Jess, Andreas
    [J]. CHEMIE INGENIEUR TECHNIK, 2013, 85 (04) : 489 - 499
  • [34] Effect of Copper-based Catalyst Support on Reverse Water-Gas Shift Reaction (RWGS) Activity for CO2 Reduction
    Jurkovic, Damjan Lasic
    Pohar, Andrej
    Dasireddy, Venkata D. B. C.
    Likozar, Blaz
    [J]. CHEMICAL ENGINEERING & TECHNOLOGY, 2017, 40 (05) : 973 - 980
  • [35] Integrated CO2 capture and reverse water-gas shift reaction over CeO2-CaO dual functional materials
    Sun, Shuzhuang
    Zhang, Chen
    Chen, Sining
    Zhao, Xiaotong
    Wang, Yuanyuan
    Xu, Shaojun
    Wu, Chunfei
    [J]. ROYAL SOCIETY OPEN SCIENCE, 2023, 10 (04):
  • [36] Boosting reverse water-gas shift reaction activity of Pt nanoparticles through light doping of W
    Kobayashi, Daiya
    Kobayashi, Hirokazu
    Kusada, Kohei
    Yamamoto, Tomokazu
    Toriyama, Takaaki
    Matsumura, Syo
    Kawaguchi, Shogo
    Kubota, Yoshiki
    Haneda, Masaaki
    Aspera, Susan Menez
    Nakanishi, Hiroshi
    Arai, Shigebumi
    Kitagawa, Hiroshi
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (28) : 15613 - 15617
  • [37] Hard templating ultrathin polycrystalline hematite nanosheets: effect of nano-dimension on CO2 to CO conversion via the reverse water-gas shift reaction
    Fishman, Zachary S.
    He, Yulian
    Yang, Ke R.
    Lounsbury, Amanda W.
    Zhu, Junqing
    Thanh Minh Tran
    Zimmerman, Julie B.
    Batista, Victor S.
    Pfefferle, Lisa D.
    [J]. NANOSCALE, 2017, 9 (35) : 12984 - 12995
  • [38] Copper catalysts for CO2 hydrogenation to CO through reverse water-gas shift reaction for e-fuel production: Fundamentals, recent advances, and prospects
    Choi, Yeji
    Sim, Gi Dong
    Jung, Unho
    Park, Yongha
    Youn, Min Hye
    Chun, Dong Hyun
    Rhim, Geun Bae
    Kim, Kwang Young
    Koo, Kee Young
    [J]. CHEMICAL ENGINEERING JOURNAL, 2024, 492
  • [39] Progress on the catalytic hydrogenation of CO2 via reverse water gas shift reaction
    Xu, Haicheng
    Ge, Liang
    [J]. Huagong Jinzhan/Chemical Industry and Engineering Progress, 2016, 35 (10): : 3180 - 3189
  • [40] ON THE ACTIVATION-ENERGIES OF THE FORWARD AND REVERSE WATER-GAS SHIFT REACTION
    SPENCER, MS
    [J]. CATALYSIS LETTERS, 1995, 32 (1-2) : 9 - 13