Personalized Federated Learning via Deviation Tracking Representation Learning

被引:0
|
作者
Jang, Jaewon [1 ]
Choi, Bong Jun [1 ]
机构
[1] Soongsil Univ, Comp Sci & Engn, Seoul, South Korea
关键词
federated learning(FL); data heterogeneity; personalized federated learning(PFL); representation learning; metalearning;
D O I
10.1109/ICOIN59985.2024.10572208
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning preserves privacy by decentralized training of individual client devices, ensuring only model weights are shared centrally. However, the data heterogeneity across clients presents challenges. This paper focuses on representation learning, a variant of personalized federated learning. According to various studies, the representation learning model can be divided into two: the base layer, shared and updated to the server, and the head layer, localized to individual clients. The novel approach exclusively utilizes the base layer for both local and global training, arguing that the head layer might introduce noise due to data heterogeneity. This can potentially affect accuracy, and the head layer is used only for fine-tuning after training to capture unique client data characteristics. Here, we observed that prolonged base training can diminish accuracy in the post-fine-tuning. As a countermeasure, we proposed a method to determine the best round for fine-tuning based on monitoring the standard deviation of test accuracy across clients. This strategy aims to generalize the global model for all the clients before fine-tuning. The study highlights the downside of excessive base training on fine-tuning accuracy and introduces a novel approach to pinpoint optimal fine-tuning moments, thereby minimizing computational and communication overheads. Similarly, we achieved a better accuracy of 53.6% than other approaches while there's a trade-off of minute communication round.
引用
收藏
页码:762 / 766
页数:5
相关论文
共 50 条
  • [41] Personalized Federated Learning with Gaussian Processes
    Achituve, Idan
    Shamsian, Aviv
    Navon, Aviv
    Chechik, Gal
    Fetaya, Ethan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [42] Federated Learning for Personalized Humor Recognition
    Guo, Xu
    Yu, Han
    Li, Boyang
    Wang, Hao
    Xing, Pengwei
    Feng, Siwei
    Nie, Zaiqing
    Miao, Chunyan
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2022, 13 (04)
  • [43] Personalized Federated Learning using Hypernetworks
    Shamsian, Aviv
    Navon, Aviv
    Fetaya, Ethan
    Chechik, Gal
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [44] Empowering over-the-air personalized federated learning via RIS
    Wei SHI
    Jiacheng YAO
    Jindan XU
    Wei XU
    Lexi XU
    Chunming ZHAO
    Science China(Information Sciences), 2024, 67 (11) : 371 - 372
  • [45] Efficient Personalized Federated Learning via Sparse Model-Adaptation
    Chen, Daoyuan
    Yao, Liuyi
    Gao, Dawei
    Ding, Bolin
    Li, Yaliang
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 202, 2023, 202
  • [46] Personalized Federated Learning with Contextual Modulation and Meta-Learning
    Vettoruzzo, Anna
    Bouguelia, Mohamed-Rafik
    Rognvaldsson, Thorsteinn
    PROCEEDINGS OF THE 2024 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2024, : 842 - 850
  • [47] Practical Vertical Federated Learning With Unsupervised Representation Learning
    Wu, Zhaomin
    Li, Qinbin
    He, Bingsheng
    IEEE TRANSACTIONS ON BIG DATA, 2024, 10 (06) : 864 - 878
  • [48] Uplink Scheduling in Federated Learning: an Importance-Aware Approach via Graph Representation Learning
    Skocaj, Marco
    Rivera, Pedro Enrique Iturria
    Verdone, Roberto
    Erol-Kantarci, Melike
    2023 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS, 2023, : 1014 - 1019
  • [49] PerFED-GAN: Personalized Federated Learning via Generative Adversarial Networks
    Cao, Xingjian
    Sun, Gang
    Yu, Hongfang
    Guizani, Mohsen
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (05): : 3749 - 3762
  • [50] Personalized and privacy-enhanced federated learning framework via knowledge distillation
    Yu, Fangchao
    Wang, Lina
    Zeng, Bo
    Zhao, Kai
    Yu, Rongwei
    NEUROCOMPUTING, 2024, 575