Towards Pareto-optimal energy management in integrated energy systems: A multi-agent and multi-objective deep reinforcement learning approach

被引:4
|
作者
Dou, Jiaming [1 ]
Wang, Xiaojun [1 ]
Liu, Zhao [1 ]
Sun, Qingkai [2 ]
Wang, Xihao [1 ]
He, Jinghan [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Elect Engn, Beijing 100044, Peoples R China
[2] State Grid Energy Res Inst Co Ltd, Beijing 102209, Peoples R China
基金
中国国家自然科学基金;
关键词
Integrated energy systems; Deep reinforcement learning; Multi -agent reinforcement learning; Multi -objective reinforcement learning; Energy management; UNIT COMMITMENT; ELECTRICITY;
D O I
10.1016/j.ijepes.2024.110022
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Deep Reinforcement Learning (DRL) is effective in solving complex, non-linear optimization problems, which is particularly relevant in energy management within Integrated Energy Systems (IESs). However, DRL approaches conventionally focus on single -objective policy learning, which is inadequate for the multi -objective optimization tasks commonly encountered in IESs energy management. To improve this, these approaches typically combine multi -objectives, such as operating cost objective and safety objective into a single reward function using scalarization techniques. This reduces the fidelity and interpretability of the objective space and limits its applicability to a wide range of IESs energy management. To address these challenges, this paper presents a novel framework called Multi -Agent and Multi -Objective DRL (MAMODRL). This framework combines value function decomposition and policy gradient methods to achieve a Pareto-optimal solution. The IESs energy management is initially formulated as a multi -objective Markov decision process. Then, an advanced MAMODRL architecture is developed, which includes objective value function networks to facilitate policy optimization. Finally, based on the definition of dominance, Pareto frontier is approximated of IESs energy management. A case study suggests that the proposed approach is effective in solving the Pareto frontier for IESs energy management. To ensure the safe operation of the system, safety threshold is set at the Pareto frontier forming a Pareto optimization with safety conditions. Compared to traditional DRL approaches, the proposed approach is more flexible, interpretable, and capable of making multi -dimensional decisions.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Towards Energy-Efficient Autonomous Driving: A Multi-Objective Reinforcement Learning Approach
    He, Xiangkun
    Lv, Chen
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2023, 10 (05) : 1329 - 1331
  • [32] Towards Energy-Efficient Autonomous Driving: A Multi-Objective Reinforcement Learning Approach
    Xiangkun He
    Chen Lv
    IEEE/CAAJournalofAutomaticaSinica, 2023, 10 (05) : 1329 - 1331
  • [33] Multi-agent deep reinforcement learning based demand response for discrete manufacturing systems energy management
    Lu, Renzhi
    Li, Yi-Chang
    Li, Yuting
    Jiang, Junhui
    Ding, Yuemin
    APPLIED ENERGY, 2020, 276
  • [34] Multi-agent deep reinforcement learning for Smart building energy management with chance constraints
    Deng, Jingchuan
    Wang, Xinsheng
    Meng, Fangang
    ENERGY AND BUILDINGS, 2025, 331
  • [35] Energy management for demand response in networked greenhouses with multi-agent deep reinforcement learning
    Ajagekar, Akshay
    Decardi-Nelson, Benjamin
    You, Fengqi
    APPLIED ENERGY, 2024, 355
  • [36] Online Reinforcement Learning in Multi-Agent Systems for Distributed Energy Systems
    Menon, Bharat R.
    Menon, Sangeetha B.
    Srinivasan, Dipti
    Jain, Lakhmi
    2014 IEEE INNOVATIVE SMART GRID TECHNOLOGIES - ASIA (ISGT ASIA), 2014, : 791 - 796
  • [37] Distributed energy management of multi-area integrated energy system based on multi-agent deep reinforcement learning (vol 157, 109867, 2024)
    Ding, Lifu
    Cui, Youkai
    Yan, Gangfeng
    Huang, Yaojia
    Fan, Zhen
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2024, 158
  • [38] Pareto-optimal sampling for multi-objective protein sequence design
    Luo, Jiaqi
    Ding, Kerr
    Luo, Yunan
    ISCIENCE, 2025, 28 (03)
  • [39] Searching for robust Pareto-optimal solutions in multi-objective optimization
    Deb, K
    Gupta, H
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, 2005, 3410 : 150 - 164
  • [40] A Pareto-optimal genetic algorithm for warehouse multi-objective optimization
    Poulos, PN
    Rigatos, GG
    Tzafestas, SG
    Koukos, AK
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2001, 14 (06) : 737 - 749